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Zusammenfassung

Techniken zur Constraint-Verarbeitung �uber endlichen Wertebereichen (�nite domain
constraints) werden seit �uber 20 Jahren untersucht und haben sich gerade in den letzten
Jahren ein immer breiter werdendes Anwendungsfeld gescha�en. Obwohl diese Techniken
in ihrem Kern auf ideale Weise Deklarativit�at bei der Problembeschreibung mit E�zienz
bei der Probleml�osung vereinbaren, wird in vielen praktischen Anwendungen das Ziel der
Deklarativit�at zugunsten einer verbesserten E�zienz aufgegeben.

Die vorliegende Arbeit zeigt, da� dies nicht notwendigerweise der Fall sein mu�: Nach
einer Einf�uhrung in die grundlegenden Verfahren der Constraint-Verarbeitung werden
zun�achst Techniken untersucht, die den Umgang mit gewichteten Randbedingungen und
somit die Relaxierung eines sonst unl�osbaren Problems erm�oglichen. Damit er�o�net
sich ein sehr viel weiteres Spektrum von Anwendungen f�ur die Constraint-Verarbeitung.
Da Gewichtungen deklarativ formuliert werden k�onnen, tr�agt diese Erweiterung auch
zur Erh�ohung der Deklarativit�at dieses Ansatzes bei. Das gleiche gilt ebenfalls f�ur die
Verwendung hierarchisch strukturierter Wertebereiche (Taxonomien) bei der Constraint-
Verarbeitung, wobei dieser Ansatz auch bereits deutliche E�zienzvorteile bietet. F�ur die
Realisierung praktischer Anwendungen hat es sich au�erdem als n�utzlich herausgestellt,
die Techniken der Constraint-Verarbeitung in einer allgemeinen Programmiersprache
nutzen zu k�onnen. Eine solche Integration in eine logik-orientierte Programmiersprache
(Prolog) wird deshalb ebenfalls untersucht, sowie abschlie�end, als weitere M�oglichkeit
zur E�zienzsteigerung, auch deren Parallel-Verarbeitung diskutiert.

Alle beschriebenen Techniken sind in Form der Constraint-Systeme Contax bzw.
FiDo implementiert und praktisch erprobt worden. Da� die mit diesen Arbeiten unter-
mauerte These, wonach sich Deklarativit�at und E�zienz in der Constraint-Verarbeitung
sehr gut vereinbaren lassen, nicht nur auf kleine Beispielanwendungen beschr�ankt
bleibt, zeigt der abschlie�ende Anwendungsteil der vorliegenden Arbeit: Hier werden
zwei praktische Anwendungen in der Fertigungsplanung im CIM-Bereich, sowie in der
Sportst�attenbelegung des Hochschulsports vorgestellt. Der Erfolg beim Einsatz des
Constraint-Systems Contax zur L�osung dieser Probleme beruht ganz wesentlich auf
den M�oglichkeiten zum e�zienten Umgang mit gewichteten Constraints und hierarchisch
strukturierten Wertebereichen.

Somit wird in dieser Arbeit nicht nur gezeigt, da� die beschriebenen Techniken und
Erweiterungen die sonst einander ausschlie�enden Ziele der Deklarativit�at und E�zienz
in Einklang bringen (declarativity meets e�ciency), sondern es wird auch gezeigt, da�
diese Arbeiten neben einem theoretischen Interesse auch die Anforderungen realer An-
wendungen befriedigen (theory meets application).
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Summary

Constraint processing techniques over �nite domains (�nite domain constraints) are stud-
ied for more than 20 years and have entered more and more application �elds. Although
these techniques ideally combine declarative problem formulation with e�cient problem
solving, most practical applications abandon declarativity for the sake of higher e�ciency.

The present thesis shows that this must not necessarily be the case: After introducing
the basic constraint processing methods, techniques are studied for dealing with weighted
constraints and thus allowing for relaxing problems that otherwise would be unsolvable.
This opens a much broader range of application areas for constraint processing. As
weights can be formulated declaratively, this extension also improves the declarativity of
our approach as a whole. The same is true for making use of hierarchically structured
domains (taxonomies) in constraint processing which already o�ers signi�cant advantages
as concerns e�ciency.

In practical applications it has also appeared to be useful having constraint processing
techniques embedded in a universal programming language. Therefore, we will also study
an integration of consistency techniques in a logic programming language (Prolog) and
will �nally discuss further improving e�ciency by using parallel processing.

All techniques described are implemented in the constraint systems Contax and
FiDo and have been tested in practical use. The claim that as far as �nite domain
constraints are concerned, declarativity does not compete e�ciency, is furthermore sup-
ported by the second part of the thesis where two practical applications to computer
integrated manufacturing (CIM) and to university sports scheduling are presented. The
success of using the Contax system to solve these problems basically rests on the ability
to e�ciently deal with weighted constraints and hierarchically structured domains.

Hence, the present thesis shows that the techniques and extensions presented here
do not only contribute to bridge the gap between declarativity and e�ciency|and let
declarativity meet e�ciency| but also tackle interesting theoretical issues as well as
practically relevant problems|and let theory meet application.
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Introduction

It is wrong to think of Waltz's work only as a
statement of the epistemology of line drawings of

polyhedra. Instead I think it is an elegant case study
of a paradigm we can expect to see again and again.

{ Patrick Winston
The Psychology of Computer Vision (1975)

When more than two decades ago David Waltz presented his now well-known �ltering
algorithm for labeling three-dimensional line-diagrams [Waltz, 1972], one could hardly
expect that the basic principle he introduced, namely the technique of constraint propa-
gation, would become the basis of an emerging research area which has already outgrown
the �eld of Arti�cial Intelligence and started to inuence many other disciplines.

Today, an increasing body of researchers from Logic Programming, Knowledge Rep-
resentation, Expert Systems, Theoretical Computer Science, Operations Research and
other related �elds are now investigating the use of constraint satisfaction techniques,
their foundations and their applications to real-life problems. Over the recent years,
constraint satisfaction has come to be seen as the core problem in many applica-
tions, for example temporal reasoning [Allen, 1983, Dechter et al., 1989, Fr�uhwirth,
1993, Hrycej, 1993, Tolba, 1993], spatial reasoning [G�usgen, 1989, Kopisch, 1993,
Charman, 1993], con�guration [Frayman and Mittal, 1987, Havens and Rehfuss, 1989,
Mittal and Falkenhainer, 1990, Dauboin, 1993], planning [Descotte and Latombe, 1985,
M�uller, 1990, Liu and Popplestone, 1990, Boizumault et al., 1993], and scheduling [Fox
et al., 1983, Fox, 1986, Fox and Sadeh, 1990, Duncan, 1990, Evans, 1992]. Its role
in logic programming has also been recognized [Ja�ar and Lassez, 1987, Rossi, 1988,
Van Hentenryck, 1989] as well as its relation to Operations Research [Van Hentenryck
and Carillon, 1988, Jaakola, 1990, Lee et al., 1993] and Databases [Morgenstern, 1985,
De�loch, 1993].

The importance of constraint satisfaction is also reected by the abundance of pub-
lications made at recent conferences such as ECAI-92, AAAI-92, and IJCAI-93, the
dominance of constraint processing topics in the list of accepted papers at this year's
major conferences like AAAI-94 and ECAI-94, as well as by the recent appearance of
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dedicated workshops on this topic such as the PPCP series1 in the United States and the
Constraint Processing Workshops in Europe2. A special volume of Arti�cial Intelligence
was also dedicated to constraint processing in 1992 (Volume 58, Nos 1{3).

The main reason for the increasing attraction and the success of constraint process-
ing techniques is that they appear to allow for both a declarative problem formulation
and an e�cient problem solving. However, in most real-life applications it turned out
that the constraint processing techniques at hand were too weak either to formulate
(lack of expressiveness) or to solve the given application problem (lack of e�ciency).
Thus, except for `toy applications' or problems from a very limited class the power of
constraint processing could be used only to a small extent; when faced with complex
real-life applications, specialized systems were built incorporating speci�c features of the
given application, and thus declarativity was often abandoned for the sake of e�ciency,
or for being able to solve the problem at all.

In contrast to this observation, the present thesis claims that a wide range of real-life
problems can still be declaratively formulated as well as solved e�ciently when extending
the currently available constraint processing techniques to meet signi�cant requirements
appearing in almost all practical applications, e.g. the need for dealing with weighted
constraints (priorities) or for making use of hierarchical domain structures (taxonomies).
This way, the thesis contributes to make the constraint processing approach applicable
to a wider class of application problems while still preserving both its most attractive
properties: declarativity and e�ciency.

1.1 The World of Constraint Satisfaction Problems

Constraint problems can naively be de�ned as consisting of a set of variables and a set of
constraints, each specifying a relation on a particular subset of the variables. Thus, the
relation constrains the values that the variable may take. By sharing variables among
di�erent constraints, networks of constraints can be built. The problem which then
has to be solved is to �nd the relation on the set of all variables that simultaneously
satis�es all the given constraints|respectively, the underlying relations. This problem
is referred to as the Constraint Satisfaction Problem (CSP). Typically, unary relations
for each variable specify their domains as a set of possible values and thus the required
solution relation is a subset of the Cartesian product of the variable domains. If each
domain is �nite, we are dealing with �nite domain constraints and the CSP then is a
�nite constraint satisfaction problem (FCSP) [Mackworth, 1992b].

1In 1993, an annual workshop on the Principles and Practice of Constraint Programming has been
established and meetings have been held in Newport, Rhode Island, in April 1993 and on Orcas Island,
Washington, in May 1994.

2Having recognized that the Constraint Processing community appeared to be very heterogeneous,
the need became obvious for bringing together researchers from di�erent areas dealing with various
aspects of constraint processing regarded as a general paradigm of computation. Therefore, in July 1993
we initiated and organized a two-daysWorkshop on Constraint Processing at CSAM'93 in St. Petersburg
(Russia) [Meyer, 1993]. Motivated by the success of this �rst European Constraint Processing meeting
we are currently going to continue these e�orts by organizing anotherWorkshop on Constraint Processing

to be held in August 1994 at ECAI-94 in Amsterdam [Meyer, 1994].
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�rst constraint propagation algorithm and thus states the birth of constraint processing
research.

Form a queue consisting of all junctions.
Repeat

Remove the �rst element from the queue. Call it the current junction.
If the current junction has never been visited,
then create a pile of junction labels for it consisting of all possible

junction labels for the junction type involved.
Note that a pile change has occured.

endif
If any junction label from the current junction's pile is incompatible

with all the junction labels in any neighboring junction's pile,
then eliminate that incompatible label from the current junction's pile.

Note that a pile change has occured.
endif
If a pile change has occured,
then for each neighboring junction with a pile that is not on the

queue, add that junction to the front of the queue.
endif

until the queue is empty.

Figure 1.4: The Waltz �ltering algorithm for scene labeling

The basic idea of this algorithm is that constraints are evaluated locally and the restric-
tions for labelings are propagated to neighbor constraints (junctions) without constructing
the set of all possible combinations of labelings. Thus, by using constraint propagation
techniques, consistent labelings could be found e�ciently.

Many other problems can be formulated as constraint satisfaction problems, although
researchers who are not familiar with this �eld sometimes fail to recognize them, and
consequently, fail to make use of specialized techniques for solving them.

However, most real-life problems do not come in the concise form as the scene-labeling
problem does. Often it requires some thought to recognize how a given problem can be
formalized as a CSP. And, even more often the problem exhibits some characteristics that
excludes it from being solved using currently available constraint solving techniques. For
example, consider the types of requirements occuring in a production planning applica-
tion which are shown in Figure 1.5.

The technological requirements stored in a database can be easily transferred into a
representation such that CSP techniques can use them appropriately. The same is true
for the geometrical requirements although the domains may no longer be �nite and thus
the most powerful class of constraint-solving techniques cannot be applied. However, the
hardest problem for most state-of-the-art constraint solvers comes with the economical
requirement which obviously needs not to be satis�ed in any case. Therefore, techniques
are needed to handle di�erent degrees of how important or restrictive a constraint is, or
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Plate Material Process Holder TCEA

mm41 steel rough tmaxp 65
mm41 cast rough tmaxp 77
mm41 alloy-steel rough tmaxp 77
mm41 alu rough tmaxp 77
mm41 build-steel rough tmaxp 77
mm71 cast rough tmaxu 65
mm71 steel finish tmaxu 55
mm71 alloy-steel finish tmaxp 72
mm71 alloy-steel finish tmaxu 65
mm71 alu finish tmaxp 72
mm71 build-steel finish tmaxu 65
nma steel rough tmaxp 65
nma cast rough tmaxp 77
nma alloy-steel rough tmaxp 77
nma cast rough tmaxu 65
nam steel finish tmaxu 55
nma alloy-steel finish tmaxp 72
nma alloy-steel finish tmaxu 65
mm52 steel rough tmaxp 65
mm52 cast rough tmaxp 77
mm52 alloy-steel rough tmaxp 77
mm52 cast rough tmaxu 65 χ + ε + β < 180

o

if

process is roughing

then

prefer square insert
to triangular one

technological requirements geometrical requirements economical requirements

AAA
AAA
AAA

Figure 1.5: Requirements for Lathe-Tool Selection in a CIM Environment

to relax a problem appropriately if it appears that not all constraints (requirements) can
be satis�ed simultaneously.

In the same application CIM application we are also faced with large domains of values
that are structured hierarchically in a way as shown in Figure 1.6.

lathe-tools

finishing-tools roughturn-tools

cma universal-tools nma

rcmxdcma tcma scma ccma

dnmg tnmg snmg cnmg

dnma tnma snma cnmanmg

Figure 1.6: A sample hierarchical domain of lathe tools

As most state-of-the-art constraint solvers do not exploit this hierarchical structure,
they perform rather ine�cient on problems with large hierarchical domains. Therefore,
investigating techniques for dealing with these characteristics that are apparent in most
practical applications, will be one of the central issues for this thesis.

1.2 Declarativity competes E�ciency

Given a problem like the scene labeling problem, there are several ways to represent and
solve it using a computer. Besides other criteria, they can be compared concerning the
declarativity and e�ciency of the resulting implementation.

� Declarativity as a goal in Software Engineering traces back to Bob Kowalski who
proposed the separation of the logical (declarative) and control (procedural) parts
of an algorithm when he stated his now famous equation:
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Algorithm = Logic + Control [Kowalski, 1979].

Today, declarativity plays a more and more important role in knowledge repre-
sentation and reasoning as well as in programming language design. Declarative
representation, meaning that knowledge is being represented without anticipating
its later use, is now believed to be the key issue

{ for achieving software/knowledge sharing and reuse,

{ for allowing formal veri�cation of knowledge bases or programs,

{ for supporting software or knowledge-base maintenance, and �nally

{ for increasing the acceptance of AI applications by developing programs or
knowledge-bases that are much easier to understand.

� E�ciency can naively be measured by the �nal run-time of a given application.
Although this often is what the user of a system is ultimately interested in, its
absolute value will change from one hardware generation to the next and thus
e�ciency in this sense would just be a matter of the development of more powerful
hardware systems. In contrast, e�ciency can be better de�ned in terms of how
e�ciently a system performs its task, i.e., how many of the operations that it
performs are really necessary to solve a particular problem.

One possible approach for solving a combinatorial problem, would of course be to develop
a specialized computer program using some imperative programming language, that will
be hard-coded to analyze the given line drawings in the scene labeling problem. Such
a program can especially be tuned to solve its one given problem. Thus, the program-
mer can take advantage of any optimizations and codings that may help to solve the
problem faster, e.g. by using a bit-vector coding for representing connections between
the edges in a scene which has to be labeled. Such a program would solve its task very
e�ciently. However, as soon as it has to be adapted to an only slightly di�erent problem
speci�cation, we are faced with serious problems:

� First, the program will be hard to understand|sometimes even for the programmer
himself or herself, respectively.

� Second, it will be very di�cult to identify those parts of the program that can be
reused for a new application3.

� Finally, such a program will be very hard or even impossible to verify, i.e. to prove
its correctness and completeness. Therefore, it may not be used in any security-
relevant application where it has to be guaranteed that it will always behave as
speci�ed.

3This is one of the hardest problems in Software Engineering in general and has led to the development
of abstractions and encapsulation concepts for enabling the sharing and reuse of software modules (cf.
e.g. [Boehm, 1988], [Wegner, 1990]).
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Thus, the price that one has to pay for getting highest possible e�ciency will be a loss in
understandability, reusability, maintainability, and in applicability of formal veri�cation
methods.

On the other extreme, as the scene labeling problem comes with a very concise and
logical de�nition, one could also try to represent it as a �rst-order theory, formulate
the existence of a consistent line labeling as a theorem, and then run a general theorem
prover on it. The resulting program, i.e. the theory, will be much easier to understand.
As it will be represented as a logical formula, parts of it will be easily reusable, and the
theory/program itself will be easy to maintain when the problem speci�cation changes.
Finally, due to the formal logical representation, formal veri�cation methods are also
easily applicable. However, these bene�ts of a purely declarative problem representation
as a logical formula also have to be paid for: First-order theorem provers turn out to be
very ine�cient due to their generality. Thus, they have only rarely been used for solving
real-life problems if problem-speci�c heuristics have been available to guide the proof
search.

These observations show that usually declarativity and e�ciency compete each other.
Therefore, one may start to search for a compromise between these counterparts: declar-
ative representation on the one hand and e�cient problem-solving on the other hand:
Coming from the procedural representation side, higher-level programming languages can
be used to build abstractions by hiding low-level details and to support the encapsulation
of software modules. This approach obviously increases the declarativity|for the cost
of e�ciency. On the other side, restricting oneself from �rst-order logic to Horn logic,
more e�cient theorem provers from logic programming, i.e. Prolog systems, can be
used. However, Prolog does also introduce some constructs that violate the declar-
ative approach, e.g. the cut operator and the negation as failure principle. Hence, by
using Prolog instead of a general theorem prover, we increase e�ciency|for the cost
of declarativity. Thus, it seems that all approaches, i.e. programming paradigms, can be
qualitatively drawn on a convex curve as shown in Figure 1.7.

Efficiency

Declarativity

Logic
Programming

Imperative
Programming

Functional
Programming

First-Order
Theorem Proving

Figure 1.7: Declarativity competes E�ciency
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1.3 The Role of Finite Domain Constraints

For combinatorial problems like the scene labeling problem, we recognize that declara-
tivity and e�ciency do not necessarily compete. Instead, representing these problems as
�nite domain constraint satisfaction problems allows to preserve a very declarative rep-
resentation while at the same time gaining an e�cient problem solving. This is especially
important as constraint satisfaction problems belong to the class of NP-complete prob-
lems, meaning that no algorithm for solving them in acceptable time4 has been found,
and it is most unlikely, according to accepted mathematical conjecture NP 6= P, that
any such algorithm will ever emerge. The only theoretical way of solving anNP-complete
problem is to enumerate all possible solutions and wait for an acceptable one to appear.
This exhaustive exploration of the search space can, in the worst case, take an amount of
time that increases exponentially with the size of the data. This implies that we should
give up any hope of tackling these problems exhaustively.

Fortunately, we do not need to give up hope because the worst case (which requires
exponential time) is not likely to appear in reality. This is because for �nite domain
CSPs we can make use of the speci�c characteristics of each problem to restrict as much
as possible the number of potential solutions that need to be exhaustively explored.
In the sense of the above interpretation of the term `e�ciency' this directly improves
the e�ciency of the approach. The techniques for doing this are basically constraint
propagation techniques which feature exibility and data-driven computation in order to
avoid treating all cases as the worst case. Thus, for �nite domain constraints we have a
situation like that shown in Figure 1.8.

Efficiency

Declarativity

Imperative
ProgrammingFunctional

Programming

First-Order
Theorem Proving

Finite Domain
Constraints

Logic
Programming

Figure 1.8: The Role of Finite Domain Constraints

This means that for problems which can be represented as FCSPs we have techniques
at hand|basically, constraint propagation|that allow for a problem representation at
least as declarative as when using a purely relational representation (e.g., pure Prolog)
but at the same time o�ering much better problem solving e�ciency.

4The term acceptable time is taken to mean that the time to �nd a solution is no worse than a
polynomial function of the size of the data, as opposed to, say, an exponential function.
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However, the majority of real-life problems cannot be directly represented as a CSP.
Therefore, we have �rst to investigate how constraint satisfaction techniques can be
extended in order to become applicable to a wider class of problems, and second, how
we can still achieve both declarative representation and e�cient problem solving even
for this wider class of problems. The present thesis contributes to both of these goals.

1.4 Outline of the Thesis

Being faced with various real-life application problems at DFKI, we recognized that
although these problems can in some sense be regarded as '�nite domain constraint
satisfaction problems', current CSP techniques turned out either to be not applicable at
all or to be too weak to solve the given problems e�ciently.

Thus, in this thesis we focus on developing extensions to current CSP techniques in
order to cope with the characteristics of the problems at hand. Although the extensions
presented are motivated by concrete applications, throughout the �rst part we will use
a simple but rich enough map-coloring example to illustrate the key problems and how
to extend the framework in order to solve them.

In Chapter 2 we will �rst formally introduce the constraint satisfaction problem and
set up a logical framework for the discussion of constraint satisfaction techniques that
also helps to clarify the relationship to other representation and reasoning systems.

Chapter 3 will then introduce and discuss constraint propagation techniques and
present an algorithm for e�ciently solving general CSPs which constitutes the kernel
of the Contax system. Motivated by incrementally extending the map-coloring exam-
ple, we will then present two main extensions to the classical CSP framework, that have
also been implemented in the Contax system:

Most real-life problems cannot be solved optimally. Regarding such problems as con-
straint satisfaction problems, this means that no formally consistent solution can be
found. However, humans do solve such problems every-day by `computing' the `best
sub-optimal solution. The key issue is that normally not all given constraints have to be
satis�ed with the same strength: some de�nitely need to be ful�lled, others can be omit-
ted if necessary. Therefore, in Chapter 4 we will extend the classical CSP framework by
introducing weighted constraints which will then allow us to relax a given CSP as much
as needed in order to �nd the 'best sub-optimal solution'.

Moreover, for most real-life problems, especially in technical applications, the domains
(classes) we are dealing with can be arranged hierarchically. As the constraints are also
mostly dealing with entire sub-classes instead of individual elements, constraint propa-
gation techniques should also be able to perform propagation on this more abstract level
of domain subsets. Therefore, in Chapter 5 we will extend the classical CSP framework
by introducing hierarchical consistency-techniques.

Having extended our CSP framework by allowing for weighted constraints and hier-
archical domains, we will be able to both declaratively represent and e�ciently solve
a much larger class of constraint satisfaction problems. However, again motivated by
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the need to go beyond isolated toy problems and to tackle real-life problems, we soon
recognize that only few application problems can be completely mapped to a CSP. A
large part of any application is dealing with, e.g. user interfaces, I/O, arithmetics, and
overall control. Thus, the constraint solver will either have to be linked to an application
program written e.g. in Lisp via an interface, or be embedded in a universal relational
programming language like e.g. Prolog. Therefore, in Chapter 6 we will discuss how
to integrate �nite domain constraint satisfaction techniques into Prolog. Obviously,
the resulting FiDo language combines and thus enhances the declarative representation
features of both constraint satisfaction and logic programming. However, special care
has to be taken not to loose the e�ciency gained for each of these approaches separately.
Thus, we will also study di�erent implementation approaches for FiDo in detail.

For improving the e�ciency of any computer application, one approach that has re-
ceived increasing attention over the last years, is to split a given problem into independent
subtasks which can be solved in parallel, and then to construct the �nal solution by com-
bining the results of the subtasks. Therefore, in Chapter 7 we will �nally discuss how to
parallelize constraint satisfaction within the FiDo system.

Figure 1.9 summarizes the research issues to be tackled in this thesis and how they
contribute to improving declarativity and e�ciency of �nite domain constraint solving.

Efficiency

Declarativity

Logic
Programming

Imperative Programming

First-Order
Theorem Proving

Parallelization (Chapter 7)

Integration in Logic Programming (Chapter 6)

Constraints over Hierarchical Domains  (Chapter 5)

Weighted Constraints  (Chapter 4)

Functional
Programming

Figure 1.9: Contributions to Finite Domain Constraints

Summarizing, the techniques that will be presented in this thesis enable us to solve
a wider class of problems, allow for a declarative problem representation, and can be
implemented very e�ciently. Thus, we will show that for a signi�cant and increasing class
of application problems improving both declarativity and e�ciency is not a contradiction
and hence we have:

Declarativity meets E�ciency.

While all these more theoretical issues will be illustrated using one simple to understand,
but nevertheless rich enough `toy example', we will show in Chapter 8 how the theory
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presented in the previous chapters can be used to solve real-life application problems in
di�erent domains, e.g. computer-aided process planning and university sports planning
and will thus show that:

Theory meets Application.



2

Basic Concepts and Views on Constraint

Satisfaction

Applying constraint satisfaction techniques for solving a combinatorial problem requires
two tasks to be performed: First, the problem must be formulated in terms of a constraint
satisfaction problem (CSP). Once this has been done we can run appropriate constraint-
solving techniques on the CSP in order to obtain a solution for the given problem.

In this chapter, we will �rst focus on CSP representation before we will discuss tech-
niques for solving them. Section 2.1 will introduce the constraint satisfaction problem
as a declarative problem formulation according to [Amarel, 1970] and will present some
useful terminology which enables us to give a formal de�nition of the constraint sat-
isfaction problem in general and what is meant by solving a CSP. We will then focus
on �nite constraint satisfaction problems (FCSPs), i.e. CSPs whose variable range over
�nite domains, because, as we will see later, for solving FCSPs e�cient algorithms can
be developed which exploit these features. In Section 2.2 we will take a logical view
on the �nite constraint satisfaction problem and will present the FCSP framework as
a highly restricted logical calculus within a space of logical representation and reason-
ing systems. Establishing connections amongst the di�erent logical views of constraint
satisfaction problems will allow algorithms and results from these desperate areas to be
imported, and specialized, to FCSPs. Finally, in Section 2.3 we will then focus on the
aspect of e�ciently solving an FCSP, present a generic search algorithm for FCSPs, and
will discuss directions towards improving its e�ciency which have been realized in the
Contax and FiDo systems to be presented in the next chapters.

The formal framework and most algorithms will be illustrated using the following in-
stance of the map-coloring problem as a simple and easy to understand example through-
out the next chapters:

Problem 1 (German-map coloring problem) The German-map coloring problem
is to decide how to color the political map of West Germany1 as shown in Figure 2.1
using only three colors: red, blue, and green. Each state should be colored di�erently
from its neighbours, and some colors have already been �xed: Hessen should be colored
green while Hamburg, Bremen and Saarland should be red.

1For the moment we will restrict ourselves to coloring the political map of the Federal Republic of
Germany as of before the re-uni�cation in 1990. We will later extend and 'update' this example by
including the new (eastern) states (cf. Chapter 4).
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Figure 2.1: An example FCSP: coloring the political map of Germany

This problem seems quite trivial and its solution requires only little thought, but it serves
our purpose here. It will later be extended and used to motivate and illustrate extensions
of our framework towards constraint relaxation methods (cf. Chapter 4) and techniques
for e�ciently dealing with hierarchically structured domains (cf. Chapter 5).

2.1 Formulating Constraint Satisfaction Problems

Problem solving is a central phenomenon studied in AI. It is a process that involves
�nding, or constructing, a solution to a given problem. The idea of using a purely
declarative formulation when posing a given problem to a problem-solving system dates
back to the early days of AI research. In [Amarel, 1970] we can already �nd the following
de�nition of a declarative problem formulation:

De�nition 1 (declarative problem formulation [Amarel, 1970]) A declarative
problem formulation takes the following general form: \Given a domain speci�cation D,
�nd a solution x such that x is a member of a set of possible solutions X and it satis�es
the problem conditions C."

This kind of a declarative problem formulation is very close to the formulation of a
constraint satisfaction problem (CSP). The following table shows that the notions used in
the declarative problem formulation can be easily mapped to terms in a CSP formulation:

domain speci�cation (D) = set of possible values for the variables
set of possible solutions (X) = set of all value combinations for the variables

problem conditions (C) = set of constraints
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This mapping also shows that formalizing a problem as a CSP yields a very declarative
representation. In the following, we will now more formally discuss the CSP formula-
tion. Therefore, we will �rst introduce some basic concepts that are needed for a formal
de�nition of the constraint satisfaction problem.

2.1.1 Variables and domains

When representing a given problem as a CSP, the objects of the problem statement can
be represented as variables. A variable in a CSP ranges over a set of possible values that
will be referred to as its domain:

De�nition 2 (variable domain) The domain of a variable is a set of all possible values
that can be assigned to the variable. If X is a variable, then we use DX to denote the
domain of X.

When the domain contains numbers only, the variable is called numerical variable. The
domain of a numerical variable may be further restricted to integers, rational numbers or
real numbers. For example, the domain of an integer variable is an in�nite set f1,2,3,: : :g.
When the domain contains boolean values only, the variable is called boolean variable;
when it contains values from an enumerated type of objects, the variable is called symbolic
variable.

Example 1 (variable domain) The color assigned to a state in the map-coloring prob-
lem can be represented in a CSP formulation as a symbolic variable of which the domain
is the �nite set fred, green, blueg.

2.1.2 Assigning values to variables

We will now introduce the concept of labels that represent the assignment of a value to
a variable.

De�nition 3 (label) A label is a variable-value pair that represents the assignment of
a value to a variable. We use hX  vi to denote the label of assigning the value v to the
variable X. hX  vi is only meaningful if v is in the domain of X, i.e. v 2 DX.

De�nition 4 (compound label) A compound label is the simultaneous assignment of
values to a set of variables. We use (hX1  v1i,hX2  v2i,: : :,hXn  vni) to denote the
compound label of assigning v1, v2, : : :, and vn to X1, X2, : : :, and Xn respectively.

Since compound labels are regarded as sets, the ordering of the labels in this represen-
tation is insigni�cant.

De�nition 5 (k-compound label) A k-compound label is a compound label which as-
signs k values to k variables simultaneously.
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De�nition 6 (projection) If m and n are integers such that m � n, then an m-
compound label M = (hX1  v1i,: : :,hXm  vmi) is a projection of an n-compound
label N = (hY1  w1i,: : :,hYn  wni), written as projection(N,M), if the labels in M all
appear in N:

8M;N :M = (hX1  v1i,: : :,hXm  vmi); N = (hY1  w1i,: : :,hYn  wni) :
projection(N,M) � fhX1  v1i,: : :,hXm  vmig � fhY1  w1i,: : :,hYn  wnig

Example 2 (projection) Let HS, HH and HB be variables in the German-map coloring
problem. Then the compound label (hHS  greeni,hHB  redi) is a projection of the
compound label (hHS  greeni,hHH  redi,hHB  redi), which means the proposition
projection((hHS greeni,hHH redi,hHB redi), (hHS greeni,hHB redi)) is true.

De�nition 7 (variables of a compound label) The set of variables of a compound
label L, written as vars(L), is the set of all variables which appear in that compound label:

vars((hX1  v1i,hX2  v2i,: : :,hXn  vni)) � fX1; : : : ; Xng

2.1.3 Constraints

The problem conditions in the problem statement of [Amarel, 1970] can be formulated
as constraints in a CSP. A constraint on a set of variables is a restriction on the values
that they can take simultaneously.

A constraint can be represented in a number of ways. Constraints on numerical
variables can be represented by equations or inequalities; for example, a binary constraint
CfX;Y g may be X + Y < 10. Conceptually, a constraint can be seen as the set of all
legal compound labels for the subject variables, showing the values that are mutually
compatible for the set of variables. This representation is taken here as it helps to
formulate the concept of constraint relaxation where relaxing a constraint means adding
elements to the set of legal compound labels. Alternatively, a constraint may also be
viewed as a function which maps every compound label on the subject variables to true
or false; or it can be seen simply as a relation on the subject variables. This logical
representation is taken in Section 2.2 when viewing constraint satisfaction as a logical
representation and reasoning framework. However, the choice of representation does not
a�ect the generality of our discussions.

De�nition 8 (constraint) Let V = fX1; : : : ; Xng be a �nite set of variables with values
from their domains DX1

, : : :, DXn . A constraint C on the set of variables V denotes a
subset of the Cartesian product of the domains, i.e. C � DX1

� : : : � DXn , represented
as a set CfX1;:::;Xng of compound labels for the variables X1; : : : ; Xn. It is also identi�ed
with the formula pX1;:::;Xn(X1; : : : ; Xn) which is satis�ed by a tuple �v = (v1; : : : ; vn) with
vi 2 DXi

; 1 � i � n i� �v 2 C, or (hX1  v1i,: : :,hXn  vni) 2 CfX1;:::;Xng, respectively.

Example 3 (constraint) Let V = fNS; SHg be a set of variables in the German-
map coloring problem representing the colors assigned to Niedersachsen and Schleswig-
Holstein, respectively. The domain of both variables is the �nite set fred; green; blueg.
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As the states Niedersachsen and Schleswig-Holstein have a common border (cf. Fig-
ure 2.1), the colors assigned to the variables NS and SH have to be di�erent. This
constraint pNS;SH(NS; SH) � NS 6= SH is represented by the following set of com-
pound labels CfNS;SHg = f (hNS  greeni,hSH  redi), (hNS  greeni,hSH  bluei),
(hNS  redi,hSH  greeni), (hNS  redi,hSH  bluei), (hNS  bluei,hSH  redi),
(hNS bluei,hSH greeni) g which enumerates all legal combinations of colors for the
two states.

De�nition 9 (variables of a constraint, arity) The variables of a constraint C,
written as vars(C), are the variables of the members of the constraint C:

vars(CfX1;:::;Xng) � fX1; : : : ; Xng

The arity of a constraint C is the cardinality of the set vars(C).

A constraint CfX1;X2;:::;Xkg restricts the set of compound labels that X1, X2, . . . , and Xk

can take simultaneously. Therefore, taking k = 1 allows to represent the domain DX of
a variable X as a unary constraint CfXg on X.2

Example 4 (domains as unary constraints) In the German-map coloring problem
the variable NS can only take the values red, green, and blue, i.e. DNS = fred; green; blueg.
We can now represent the domain of NS also as a unary constraint CfNSg = f(hNS  
redi), (hNS greeni), (hNS bluei)g.

2.1.4 Satisfying a constraint

Compound labels represent value assignments to a set of variables. As the values that
a variable may take are restricted by constraints, we need a notion to express whether
a compound label satis�es a constraint. We shall de�ne a binary relationship satis�es
between a compound label and a constraint:

De�nition 10 (satis�es, for compound labels) Let L = (hX1  v1i,hX2  v2i,: : :,
hXn  vni) be a compound label and CfX1;X2;:::;Xng be a constraint. Then, L satis�es C if
and only if L is an element of C.

satis�es(L;CfX1;X2;:::;Xng) � L 2 CfX1;X2;:::;Xng

For convenience, satis�es is also de�ned between labels and unary constraints:

De�nition 11 (satis�es, for labels) satis�es(hX  vi; CfXg) � (hX  vi) 2 CfXg)

This allows us to write satis�es(hX  vi; CfXg) as well as satis�es((hX  vi); CfXg).
Following [Freuder, 1978], the concept of satis�es(L;C) is extended to the case when C
is a constraint on a subset of the variables of the compound label L.

2Note the di�erence between CfXg and DX : CfXg is a set of labels while DX is a set of values.
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De�nition 12 (satis�es) Given a compound label L and a constraint C such that the
variables of C are a subset of the variables of L, the compound label L satis�es constraint
C if and only if the projection of L onto the variables of C is an element of C.

8X1; X2; : : : ; Xk : 8v1 2 DX1
; v2 2 DX2

; : : : ; vk 2 DXk
:

8S � fX1; X2; : : : ; Xkg :
satis�es((hX1  v1i,hX2  v2i,: : :,hXk  vki); CS)
� (9cl 2 CS : projection((hX1  v1i,hX2  v2i,: : :,hXk  vki); cl))

In other words, when C is a constraint on the variables fX1; X2; : : : ; Xkg or its subset,
then L satis�es C if the labels for those variables in L are legal as far as C is concerned.

Example 5 (satis�es) Consider the compound label L = (hHS greeni, hNS bluei,
hSH redi). L satis�es the constraint CfNS;SHg if and only if (hNS bluei,hSH redi)
is a member of CfNS;SHg.

2.1.5 Formal de�nition of the constraint satisfaction problem

With the terminology introduced in the previous sections we are now able to give a formal
de�nition of the constraint satisfaction problem.

De�nition 13 (constraint satisfaction problem) A constraint satisfaction problem
is a triple (V,�,C) where

V is a �nite set of variables fX1; X2; : : : ; Xng,

� is a function which maps every variable in V to a set of objects (possible values).
The set �(Xi) is denoted by DXi

and called the domain of Xi.

C is a �nite set of constraints on an arbitrary subset of variables in V . In other
words, C is a set of sets of compound labels.

In the literature, the constraint satisfaction problem is often de�ned in a stronger sense
where the domains of all variables are required to be discrete �nite sets [Tsang, 1993].
Although we will also focus on problems conforming to this stronger de�nition, we shall
introduce this subclass of the general CSP separately as �nite constraint satisfaction
problem (FCSP). This allows to talk about CSPs and FCSPs separately, as CSPs not
conforming to this stronger de�nition, e.g. by also containing numerical variables, require
di�erent techniques than can be applied to FCSPs.

De�nition 14 (�nite constraint satisfaction problem) Let P = (V; �; C) be a
CSP. If the domain DXi

of each variable Xi 2 V is �nite, then P is called a �nite
constraint satisfaction problem (FCSP).

Example 6 (�nite constraint satisfaction problem) As there are a �nite number
of states (variables), a �nite number of borders between them (constraints), and a �nite
number of colors (values in the domains) to be used, the German-map coloring problem
is a �nite constraint satisfaction problem.
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So far we have now de�ned how constraint satisfaction problems can be represented.
The task in solving a CSP then is to assign a value to each variable such that all the
constraints are satis�ed simultaneously. To express that the resulting compound label is
a solution for the given CSP, we can formally de�ne the relationship solution as follows.

De�nition 15 (solution of a CSP) Let P = (V; �; C) be a CSP on the variables V =
fX1; X2; : : : ; Xng. A solution of P is an n-compound label for all variables in V which
satis�es all the constraints in C:

8V; �; C : 8X1; X2; : : : ; Xn 2 V : 8v1 2 DX1
; v2 2 DX2

; : : : ; vn 2 DXn
:

solution((hX1  v1i,hX2  v2i,: : :,hXn  vni); (V; �; C))
� ((V = fX1; X2; : : : ; Xng) ^

(8c 2 C : satis�es((hX1  v1i,hX2  v2i,: : :,hXn  vni); c)))

A CSP is satis�able if a solution exists. Depending on the requirements of an application,
there can be di�erent meanings of how many and which solutions are required: In some
CSPs one has to �nd any solution, in other CSPs one is interested in �nding all solutions,
and in a third class of CSPs one may have to �nd the optimal solution, where optimality
is de�ned according to some domain knowledge, and from a more theoretical point of
view one may only be interested in the CSP decision problem, i.e. in determining whether
the given CSP is satis�able at all.

2.1.6 Binary constraint satisfaction problems

Since a lot of research focuses on problems with unary and binary constraints only, we
de�ne the term binary CSP for proper reference.

De�nition 16 (binary CSP, general CSP) A binary constraint satisfaction prob-
lem, or binary CSP, is a CSP with unary and binary constraints only. A CSP with
constraints not limited to unary and binary will be referred to as a general CSP.

Example 7 (binary CSP) The German-map coloring problem is a binary CSP as the
only type of constraint in this problem, the inequality of the colors assigned to neighboring
states, is a binary constraint.

We can show that any general CSP can be transformed into a an equivalent binary CSP
preserving the set of solutions of the general CSP.

Proposition 1 Let Pg = (V; �; C) be a general CSP. Then Pg can be transformed into a
binary CSP Pb having the same set of solutions concerning the variables V of the general
CSP, i.e. fsg j solution(sg; Pg)g = flb j solution(sb; Pb) ^ projection(sb; lb) ^ vars(lb) = V g.

Proof. Each k-ary constraint CfX1;X2;:::;Xkg 2 C can be replaced by a new variable
W and k binary constraints as follows. The domain of W is the set of all compound
labels in CfX1;X2;:::;Xkg, i.e. DW = CfX1;X2;:::;Xkg. Each of the k newly created binary
constraints connects W and one of the k variables X1; : : : ; Xk; the constraint CfW;Xig

which connects W and a variable Xi requires Xi to take a value which is projected from
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some compound label in the domain of W , i.e. CfW;Xig = f(hW  vW i,hXi  vXi
i) j

projection(vW ,(hXi  vXi
i))g. Thus, a (k + 1)-compound label L for the variables W ,

X1, X2, : : :, and Xk satis�es all the constraints CfW;Xig, 1 � i � k, if and only if its
projection on the variables X1 to Xk satis�es the constraint CfX1;X2;:::;Xkg. 2

This result will enable us to focus our theoretical considerations on binary CSPs,
or binary representations of CSPs. However, it should be noted that by removing k-
ary constraints for all k > 2, we introduce new variables which have large domains.
Therefore, although from the theoretical point of view it makes no di�erence, for practical
applications we will have to investigate and implement CSP solving techniques that are
able to solve general CSPs directly without transforming them into binary ones.

2.2 A Logical View on Constraint Satisfaction

Since its early days, the formulation of the constraint satisfaction paradigm has yielded
substantial theoretical and practical results [Dechter, 1992, Mackworth, 1992a]. However,
it is important not to conceive of the constraint satisfaction paradigm in isolation but to
see it in its proper context, namely, as a highly restricted logical calculus with associated
properties and algorithms. In this section we shall place the constraint satisfaction
paradigm in that context and will establish connections amongst the di�erent logical
views of constraint satisfaction problems.

We will present the FCSP framework as a restricted logical calculus within a space
of logical representation and reasoning systems. The FCSP will be formulated in a
variety of logical settings: theorem proving in �rst order predicate calculus, propositional
theorem proving, the Prolog andDatalog approaches, constraint network algorithms,
a logical interpreter for networks of constraints, and the constraint logic programming
(CLP) paradigm.

2.2.1 Finite constraint satisfaction as theorem proving

For studying FCSPs from the theorem proving point of view, we will regard variable
domains as unary constraints (cf. Section 2.1.3). Extending the given constraints in an
FCSP by unary constraints for the variable domains is covered by the following de�nition:

De�nition 17 (extended constraints set) Let P = (V; �; C) be an FCSP. Then the
extended set of constraints, denoted by extension(C), is de�ned as

C [ fCfXig = f(hXi  vi1i); : : : ; (hXi  viki)g j 1 � i � n; vij 2 DXi
g

Solving a �nite constraint satisfaction problem can now be formulated as theorem prov-
ing in a restricted form of �rst-order predicate calculus as follows [Mackworth, 1977,
Bibel, 1988]. Consider a �nite constraint satisfaction problem P = (V; �; C) with
V = fX1; X2; : : : ; Xng. The decision problem for P is equivalent to determining if
Constraints ` Query where Query has the form

9X1 9X2 � � � 9Xn QueryMatrix(X1; X2; : : : ; Xn)
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with QueryMatrix combining all formulas (identi�ed with constraints) over subsets of
fX1; X2; : : : ; Xng

QueryMatrix(X1; : : : ; Xn) =
^

fXi1 ; : : : ;Xikg
� fX1; : : : ;Xng

�
pXi1

;:::;Xik
(Xi1 ; : : : ; Xik)

����CfXi1
;:::;Xik

g

2 extension(C)

�

= pX1
(X1) ^ pX2

(X2) ^ � � � ^ pXn(Xn) ^

pX1;X2
(X1; X2) ^ pX1;X3

(X1; X3) ^ � � � ^

pX1;X2;X3
(X1; X2; X3) ^ � � � ^

...

pX1;X2;X3;:::;Xn
(X1; X2; X3; : : : ; Xn)

and Constraints being a set of ground atoms specifying the extensions of the constraints

Constraints =

8>>>><
>>>>:
pXi1

:::Xim
(ci1 ; : : : ; cim)

����������

1 � ik � n; 1 � k � n;
CfXi1

;:::;Ximg 2 extension(C);
satis�es((hXi1  ci1i, ..., hXim  cimi),

CfXi1
;:::;Ximg)

9>>>>=
>>>>;

where the ci are constants. Notice that as in the CSP formulation of Section 2.1, in this
formulation we are only specifying the value combinations allowed by a relation, not the
combinations forbidden, since Constraints consists of positive literals.

2.2.2 Finite constraint satisfaction decision problems

A �nite constraint satisfaction problem can now be speci�ed by a (Constraints,Query)
pair. A common candidate formulation of the decision problem for FCSPs is to determine
whether it can be shown that a solution exists (i.e., Constraints ` Query) or does not exist
(i.e., Constraints ` :Query). However, given the positive form speci�ed for Constraints, it
is never possible to establish that Constraints ` :Query, so this candidate formulation is
not acceptable. Later, when we consider the completion of Constraints, we shall return
to a variant of this formulation.

De�nition 18 (�nite constraint satisfaction decision problem) Given an FCSP
speci�ed by the pair (Constraints,Query). The �nite constraint satisfaction decision prob-
lem (FCSDP) then is to determine if it can be shown that a solution exists or if it cannot
be shown that a solution exists: Constraints ` Query or Constraints 6` Query.

If the decision problem is posed in the form of an FCSDP and the constraints are
supplied or discovered incrementally in the form of additional allowed tuples, extending
the set Constraints, then the answers to FCSDP are monotonic: a \No" may change to
\Yes" but not vice versa.

Proposition 2 (Decidability of the FCSDP) Given a �nite constraint satisfaction
problem speci�ed by the pair (Constraints, Query), then the FCSDP is decidable, i.e. it
can be determined whether Constraints ` Query or Constraints 6` Query.
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Proof. The Herbrand universe H of the theory Constraints [ f:Queryg is the set
H = fc j pV (: : : ; c; : : :) 2 Constraintsg. H is �nite. Now consider the following algorithm

algorithm FCSDA:
Success  No
for each (c1; c2; : : : ; cn) 2 H

n do
if Constraints ` QueryMatrix(c1; c2; : : : ; cn) then

Success  Yes
endif

endfor
return Success

Figure 2.2: A naive decision algorithm for the FCSDP

where Constraints ` QueryMatrix(c1; c2; : : : ; cn) holds i� for each Atom mentioned in
QueryMatrix(c1; c2; : : : ; cn) it is the case that Atom 2 Constraints. The algorithm FCSDA
always terminates. It returns \Yes" i� Constraints ` Query and returns \No" i� Con-
straints 6` Query. 2

The number of predicate evaluations made by FCSDA is equal to the product of the
number of atoms in QueryMatrix(c1; c2; : : : ; cn) and the cardinality of Hn.

Example 8 (German-map coloring problem in �rst-order logic) By using the
FCSP formalism presented in Section 2.2.1 we can formulate the map-coloring prob-
lem as follows: Introducing variables SH, HH, NS, HB, NW, HS, RP, SL, BW, and BY
for the colors assigned to the di�erent states as shown in Figure 2.1, we obtain the Query

9SH 9HH � � � 9BW 9BY pSH(SH) ^ pHH(HH) ^ � � � ^ pBW (BW) ^ pBY (BY) ^
6=(SH;HH) ^ 6=(SH;NS) ^ 6=(HH;NS) ^ 6=(NS;HB) ^
6=(NS;NW) ^ 6=(NS;HS) ^ 6=(NW;HS) ^ 6=(NW;RP) ^
6=(HS;RP) ^ 6=(HS;BW) ^ 6=(HS;BY) ^ 6=(RP; SL) ^
6=(RP;BW) ^ 6=(BW;BY)

and the following Constraints:

f pSH(red); pSH(blue); pSH(green); pHH(red);
pNS(red); pNS(blue); pNS(green); pHB(red);
pNW (red); pNW (blue); pNW (green); pHS(green);
pRP (red); pRP (blue); pRP (green); pSL(red);
pBW (red); pBW (blue); pBW (green); pBY (red); pBY (blue); pBY (green);
6=(red; blue); 6=(red; green); 6=(blue; red); 6=(blue; green); 6=(green; red); 6=(green; blue) g

The Herbrand universe is H = fred,blue,greeng. On the FCSP (Query,Constraints),
the algorithm FCSDA checks j H jjV j = 310 = 59:049 tuples and �nally returns \Yes"
succeeding on the tuple (green, red, blue, red, red, green, blue, red, red, blue) which
represents the solution SH = green, HH = red, NS = blue, HB = red, NW = red, HS =
green, RP = blue, SL = red, BW = red, and BY = blue (see Figure 2.3). From these
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Figure 2.3: A solution to the map-coloring problem

values, of course, only the values for SH, NS, NW, RP, BW and BY are of interest; the
values for HH, HB, HS and SL were known in advance.

We now consider the completion of Constraints with respect to the Query. Each pred-
icate mentioned in Query can be completed, using Reiter's Closed World Assumption
[Reiter, 1988], in the following sense:

completion(Constraints) =
Constraints [ f:pV (c1; c2; : : : ; ck) j ci 2 H; pV (c1; c2; : : : ; ck) =2Constraintsg

where H = fc j pV (: : : ; c; : : :) 2 Constraintsg is the Herbrand universe of the theory
Constraints. In other words, the complete extension of each k-ary predicate over Hk is
speci�ed, positively and negatively, in completion(Constraints). Note that now Constraints
` Query i� completion(Constraints) ` Query and on the other hand Constraints 6` Query
i� completion(Constraints) ` :Query.

2.2.3 Logical representation and reasoning systems

When faced with a problem in representation and reasoning, a wide spectrum of logical
representation systems is available to us. Some representation and reasoning systems are
shown in Figure 2.4, organized as a directed, acyclic graph (DAG). If there is a downward
arc from a system A to a system B, then the descriptive capabilities of A are a strict
superset of those of B.

In Section 2.2.1, for example, �nite constraint satisfaction (FCS) was shown to be
equivalent to theorem proving in a very restricted form of �rst order predicate calculus
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Figure 2.4: Some logical representation and reasoning systems

(FOPC). Horn FOPC restricts FOPC in only allowing Horn clauses3. De�nite clause
programs4 (DCP), without predicate completion, restrict Horn FOPC by allowing only
one negative clause which serves as the query. Datalog essentially restricts DCP by
eliminating function symbols. And, �nally, �nite constraint satisfaction restricts Datalog
by disallowing rules, i.e. mixed Horn clauses.

There are several further restrictions on FCS possible with corresponding gains in
tractability and some generalizations of FCS with gains in expressive power. We shall
examine various logical formulations of FCS and investigate some of their relationships
in the following.

2.2.4 FCS as propositional theorem proving

The algorithm FCSDA can be interpreted as implementing a view of FCS as theorem
proving in the propositional calculus. Query is a theorem to be proved. If a solution exists,
the theory Constraints [ f:Queryg leads to a contradiction. Taking the formalization
introduced in Section 2.2.1, we have:

:Query = :9X1:9X2 � � � :9XnQueryMatrix(X1; X2; : : : ; Xn)

= 8X18X2 � � � 8Xn:QueryMatrix(X1; X2; : : : ; Xn)

3A clause, a disjunction of literals, is Horn if it has at most one positive literal. A Horn clause takes
one of four forms: a positive unit clause consisting of a single positive literal, a negative clause consisting
only of negative literals, a mixed Horn clause consisting of one positive literal and, trivially, the empty
clause, 2.

4A de�nite clause has exactly one positive literal; it is either a unit positive clause or a mixed Horn
clause.
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A solution exists i� Constraints [ f:Queryg has no (Herbrand) models. There are no
universal quanti�ers in Query and so there are no existential quanti�ers in the theory
Constraints [ f:Queryg. Hence no Skolem functions are introduced when the theory
is converted to clausal form. This important restriction guarantees that the Herbrand
universe H is �nite. This allows us to replace each of the universal quanti�ers by the
conjunction of the :QueryMatrix(X1; X2; : : : ; Xn) clauses instantiated over Hn. The the-
ory rewritten in this way has the same set of Herbrand models as the original theory. It
is now a propositional formula in conjunctive normal form (CNF) and has a particular
restricted form for any FCSP. It consists only of a set of positive unit clauses, arising
from the constraints, and a set of negative clauses, i.e. clauses with only negative literals,
from the query. There are no mixed clauses. Note that it is also always Horn. It is
unsatis�able i� the FCSP has a solution. Since it is Horn, SAT is linear time in the
size of the formula [Dowling and Gallier, 1984], but, of course, there are j H jn negative
clauses in the formula. Also note that unit resolution alone is complete for this class of
formulas.

Example 9 (German-map coloring problem as propositional theory)
For the map-coloring problem the rewritten theory Constraints [ f:Queryg results as
follows:

f pSH(red); pSH(blue); pSH(green); pHH(red);
pNS(red); pNS(blue); pNS(green); pHB(red);
pNW (red); pNW (blue); pNW (green); pHS(green);
pRP (red); pRP (blue); pRP (green); pSL(red);
pBW (red); pBW (blue); pBW (green); pBY (red); pBY (blue); pBY (green);
6=(red; blue); 6=(red; green); 6=(blue; red); 6=(blue; green); 6=(green; red); 6=(green; blue) g

[
f :pSH(red) _ :pHH(red) _ � � � _ :pBW (red) _ :pBY (red) _ :6=(red; red);
:pSH(red) _ :pHH(red) _ � � � _ :pBW (red) _ :pBY (green) _ :6=(red; red)_
:6=(red; green);
...
:pSH(green) _ :pHH(red) _ :pNS(blue) _ :pHB(red) _ :pNW (red)_
:pHS(green) _ :pRP (blue) _ :pSL(red) _ :pBW (red) _ :pBY (blue) _ (�)
:6=(red; green) _ :6=(red; blue) _ :6=(green; red)_
:6=(green; blue) _ :6=(blue; red) _ :6=(blue; green);
...
:pSH(blue) _ :pHH(blue) _ � � � _ :pBW (blue) _ :pBY (blue) _ :6=(blue; blue) g

Repeated unit resolution on the clause marked (�) reduces it to the empty clause 2,
corresponding to the solution fSH = green, HH = red, NS = blue, HB = red, NW = red,
HS = green, RP = blue, SL = red, BW = red, and BY = blueg.

For any FCSP, using subsumption5 does not a�ect the completeness result. Iterat-
ing unit resolution followed by subsumption leaves invariant the special properties of

5If clauses of the generic form C and C _D are both present, subsumption will delete C _D.
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the formula (only negative and unit positive clauses) and, moreover, only decreases its
size. Hence, it terminates (correctly). As, of course, does the linear time HornSAT algo-
rithm. The HornSAT algorithm exactly mimics the algorithm FCSDA. The propositional
variable in each unit positive literal is set to T and each negative clause is checked: if
any clause has each (negative) literal required to be F then the formula is unsatis�able
otherwise it is satis�able.

2.2.5 FCS as theorem proving in de�nite theories

The methods discussed so far are not serious candidates for actually solving an FCSP:
they simply serve to clarify the semantics and methods of the serious candidates. One
such candidate is a Prolog interpreter, which is a theorem prover for theories consisting
of de�nite clauses. Since an FCSP can be seen as a pure Prolog program, SLD-
resolution is a sound and complete solution method. Just as for the algorithm FCSDA,
we may interpret Prolog's failure to �nd a proof for this class of theories as meaning
either Constraints 6` Query or completion(Constraints) ` :Query.

A depth-�rst SLD-resolution strategy may fail to �nd a proof for a query that is in
fact a theorem for an arbitrary de�nite clause program but will always do so for an FCSP.
It is also, generally speaking, more e�cient than other resolution methods such as the
one embodied in algorithm FCSDA.

Example 10 (German-map coloring problem as de�nite theory) For solving
the map-coloring problem in Prolog, we assert the constraints as ground facts in a
Prolog database

pSH(red). pSH(blue). pSH(green). pHH(red).

pNS(red). pNS(blue). pNS(green). pHB(red).

pNW(red). pNW(blue). pNW(green). pHS(green).

pRP(red). pRP(blue). pRP(green). pSL(red).

pBW(red). pBW(blue). pBW(green).

pBY(red). pBY(blue). pBY(green).

ne(red,blue). ne(red,green). ne(blue,green).

ne(blue,red). ne(green,red). ne(green,blue).

and then de�ne and pose the conjunctive query to Prolog:

?- pSH(SH), pHH(HH), pNS(NS), pHB(HB), pNW(NW), pHS(HS),

pRP(RP), pSL(SL), pBW(BW), pBY(BY),

ne(SH,HH), ne(SH,NS), ne(HH,NS), ne(NS,HB), ne(NS,NW),

ne(NS,HS), ne(NW,HS), ne(NW,RP), ne(HS,RP), ne(HS,BW),

ne(HS,BY), ne(RP,SL), ne(RP,BW), ne(BW,BY).

The Prolog system will then compute the solution

SH = green, HH = red, NS = blue, HB = red, NW = red,

HS = green, RP = blue, SL = red, BW = red, BY = blue
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In �nding this solution the interpreter essentially checks every possible set of bindings
for the variables SH, HH, NS, HB, NW, HS, RP, SL, BW, and BY, which gives a total number
of 36 + 14 = 729 combinations to check. For �nding the solution, 262 checks of the ne

constraint have to be performed; and a total number of 1960 checks to prove that it is the
only solution.

In order to decrease the number of constraint checks to be performed, the query can
be reordered such that a partially completed set of bindings can be rejected by a single
failure.

Example 11 (German-map coloring problem, reordered query) By reordering
the query for the map-coloring problem such that the ne constraints are checked as soon
as their variables have been instantiated, we obtain the following query

?- pSH(SH), pHH(HH), ne(SH,HH), pNS(NS), ne(SH,NS), ne(HH,NS),

pHB(HB), ne(NS,HB), pNW(NW), ne(NS,NW), pHS(HS), ne(NS,HS),

ne(NW,HS), pRP(RP), ne(NW,RP), ne(HS,RP), pSL(SL), ne(RP,SL),

pBW(BW), ne(HS,BW), ne(RP,BW), pBY(BY), ne(HS,BY), ne(BW,BY).

for which the Prolog system has only 18 checks to perform on the ne constraints to
�nd the solution, and 38 checks to �nd that it is the only one.

However, in general no �xed variable ordering can avoid thrashing by repeatedly re-
discovering incompatible variable bindings [Mackworth, 1977]. Therefore, heuristics such
as instantiating the most constrained variable next, can be used to reorder the query dy-
namically and will be discussed in Chapter 6 when we extend SLD-resolution by various
constraint-solving techniques.

2.2.6 FCS as Datalog

Since FCS is a restriction of Datalog, the techniques developed in the relational
database community are available [Maier, 1983]. The solution relation is the natural
join of the relations for the individual constraints. The consistency techniques discussed
below can be interpreted similarly; for example, making an arc consistent in a constraint
network can be interpreted as a semi-join. Results that exploit this interpretation can
be found in [Bibel, 1988, Dechter, 1992, Mackworth, 1992a].

2.2.7 FCS in constraint networks

Consideration of the drawbacks of the SLD-resolution approach mentioned above leads
to a view of FCS in constraint networks. A constraint network represents each variable
in the query as a vertex. The unary constraint px(X) establishes the domain of X, and
each binary constraint pXY (X; Y ) is represented as the edge (X; Y ), composed of arc
(X; Y ) and arc (Y;X). This easily generalizes to k-ary predicates using hypergraphs.
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Example 12 (German-map coloring constraint network) The constraint network
for the map-coloring problem is shown in Figure 2.5. The domains of the variables are
also shown in the vertices where r stands for red, b stands for blue, and g for green.
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Figure 2.5: Constraint network for the map-coloring problem

Representing CSPs as constraint networks focuses on the connections between vari-
ables. It also allows to identify subgraphs as subproblems of the CSP and serves as a
basis for a set of graph-based constraint satisfaction methods that will be discussed later.

We will restrict our discussion on binary FCSPs and de�ne when the domains of
two variables X and Y are consistent with the constraint that is represented by the arc
(X; Y ).

De�nition 19 (arc-consistency) An arc (X; Y ) is consistent i� the following meta-
language sentence holds for Constraints:

8x[pX(x)! 9y[pY (y) ^ pXY (x; y)]] (2.1)

A constraint network is arc-consistent if all its arcs are consistent.

An arc (X; Y ) can be made consistent without a�ecting the total set of solutions by
deleting the values from the domain of X that are not compatible with some value in Y .
By deleting such incompatible values, other arcs that have been consistent, may become
inconsistent. Thus, restrictions of a variables domain can be propagated to other arcs,
respectively constraints, that are connected to that variable. This process is also known
as constraint propagation [G�usgen and Hertzberg, 1988].



2.2 A Logical View on Constraint Satisfaction 39

Example 13 (arc-consistency in the German-map coloring problem) The
map-coloring network as shown in Figure 2.5 is not arc-consistent because, for exam-
ple, the arc (NS,HB) is inconsistent, i.e. the following instance of (2.1) with X = NS, Y
= HB, and pXY = 6= does not hold, because for x = red there is no value for y satisfying
the constraints pHB(y) and 6= (red; y):

8x[pNS(x)! 9y[pHB(y) ^ 6=(x; y)]]

Thus, deleting the value red from the domain of NS makes arc (NS,HB) consistent. En-
forcing consistency for the arcs (NW,HS), (NS,HS), (RP,HS), (BW,HS), and (BY,HS)
will delete the value green from the domains of NW, NS, RP, BW, and BY. Further ap-
plying this operation to arcs (SH,HH) and (RP,SL) will then also delete the value red
from the domains of SH and RP. Thus, we obtain the following intermediate constraint
network:
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One can now easily recognize that the map-coloring constraint network is still not arc-
consistent: Due to the removal of inconsistent values in the previous steps, three other
previously consistent arcs have become inconsistent:

� Consider the arc (NW,RP) or the arc (NW,NS). In any case the arc turns out to
be inconsistent and thus the value blue has to be removed from the domain of NW.

� Applying the before-mentioned schema to the arc (SH,NS) then furthermore results
in deleting the value blue from the domain of SH.

� The same happens for the domain of BW when considering the arc (BW,RP).

Due to the removal of blue from the domain of BW in the last step, now arc (BY,BW) also
becomes inconsistent and causes the red to be removed from the domain of BY. This �nally
results in getting the whole map-coloring network consistent as shown in Figure 2.6. In
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Figure 2.6: Arc-consistent network for the map-coloring problem

our example, now all variable domains hold exactly one value, such that the arc-consistent
constraint network does also represent the global solution to the FCSP.

Arc-consistency can be enforced in time linear in the number of binary constraints;
moreover, if the constraint graph is a tree, as it can be shown for the map-coloring
problem6, then arc-consistency alone su�ces as a decision procedure for the FCSP [Mack-
worth and Freuder, 1985]. Various other graph-theoretic properties of the constraint
network can be used to characterize and solve FCSPs [Freuder, 1990]. We will discuss
these issues in more detail in Chapter 3.

2.2.8 An arc-consistency rewrite system for FCSPs

Using the ideas discussed so far we can implement a logical interpreter for FCSPs as an
arc-consistency enforcing rewrite system [Van Hentenryck, 1989]. Given an FCSP for-
mulation of the form (Constraints,Query) as introduced in Section 2.2.1, following [Clark,
1978] we complete each predicate in Constraints and represent it by its de�nition, its
necessary and su�cient conditions.

Restricting the interpreter to enforcing arc-consistency, it non-deterministically
rewrites Constraints using AC rewrite rules of the following form:

pX(X)( pX(X) ^ 9Y [pY (Y ) ^ pXY (X; Y )]:

6The map-coloring network as shown in Figure 2.5 can easily be transformed into a tree by sub-
stituting any n-ary vertex V that represents a single-valued variable (like HH, HB, SL, and HS) by n
independent copies of V . Doing so for the network shown in Figure 2.5 will result in a very simple tree
structure.
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The set of AC rewrite rules, corresponding to the set of arcs in the constraint network,
applied to Constraints constitutes a production system with the Church-Rosser property
[Mackworth, 1992b]. Repeated application of the rules, rewriting the de�nitions of the
unary predicates, reduces Constraints to a �xpoint.

Example 14 (rewriting the German-map coloring problem) For the Query

9SH 9HH � � � 9BY pSH(SH) ^ pHH(HH) ^ � � � ^ pBY (BY) ^
6=(SH;HH) ^ 6=(SH;NS) ^ 6=(HH;NS) ^
6=(NS;HB) ^ 6=(NS;NW) ^ 6=(NS;HS) ^
6=(NW;HS) ^ 6=(NW;RP) ^ 6=(HS;RP) ^
6=(HS;BW) ^ 6=(HS;BY) ^ 6=(RP; SL) ^
6=(RP;BW) ^ 6=(BW;BY)

following [Clark, 1978], we obtain the following completed set of Constraints:

pSH(X) $ ((X = red) _ (X = blue) _ (X = green));

pHH(X) $ (X = red);

pNS(X) $ ((X = red) _ (X = blue) _ (X = green));

pHB(X) $ (X = red);

pNW (X) $ ((X = red) _ (X = blue) _ (X = green));

pHS(X) $ (X = green);

pRP (X) $ ((X = red) _ (X = blue) _ (X = green));

pSL(X) $ (X = red);

pBW (X) $ ((X = red) _ (X = blue) _ (X = green));

pBY (X) $ ((X = red) _ (X = blue) _ (X = green));

6=(X; Y ) $ (((X = red) ^ (Y = blue)) _ ((X = red) ^ (Y = green)) _

((X = blue) ^ (Y = red)) _ ((X = blue) ^ (Y = green)) _

((X = green) ^ (Y = red)) _ ((X = green) ^ (Y = blue))):

Applying the AC rewrite rule to the de�nition of pNS represents the �rst arc-consistency
step mentioned in Section 2.2.7:

pNS(NS) ( pNS(NS) ^ 9HB[pHB(HB) ^ 6=(NS;HB)]

( ((NS = red) _ (NS = blue) _ (NS = green))

^9HB[HB = red ^ ((NS = red) ^ (HB = blue))_
((NS = red) ^ (HB = green))_
((NS = blue) ^ (HB = red))_
((NS = blue) ^ (HB = green))_
((NS = green) ^ (HB = red))_
((NS = green) ^ (HB = blue))]

( (NS = blue) _ (NS = green):

Thus, the constraint pNS(X) $ ((X = red) _ (X = blue) _ (X = green)) gets rewritten
to pNS(X)$ ((X = blue) _ (X = green)). Repeated application of the AC rewrite rules
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reduces Constraints to the following �xpoint representing the solution for the map-coloring
problem:

pSH(X) $ (X = green);

pHH(X) $ (X = red);

pNS(X) $ (X = blue);

pHB(X) $ (X = red);

pNW (X) $ (X = red);

pHS(X) $ (X = green);

pRP (X) $ (X = blue);

pSL(X) $ (X = red);

pBW (X) $ (X = red);

pBY (X) $ (X = blue);

6=(X; Y ) $ (((X = red) ^ (Y = blue)) _ ((X = red) ^ (Y = green)) _

((X = blue) ^ (Y = red)) _ ((X = blue) ^ (Y = green)) _

((X = green) ^ (Y = red)) _ ((X = green) ^ (Y = blue))):

In general, a logical interpreter like the one presented here must interleave the AC
rewriting with some non-deterministic case analysis or higher-order network consistency,
as arc-consistency may not su�ce to solve an FCSP.

2.2.9 Relations to constraint logic programming

Constraint logic programming (CLP) [Ja�ar and Lassez, 1987] is a generalization of
logic programming where the domain of computation is abstracted. The interpreter is
still based on the resolution principle but the concept of syntactic uni�cation in the Her-
brand universe is replaced by the more general concept of constraint satisfaction in some
computation domain. Thus, the CLP scheme de�nes a class of languages CLP(D) param-
eterized by the computation domain D. For example, the CLP(R) language implements
the CLP paradigm in the domain R of real arithmetic. It allows for constraints over
real numbers and uses a modi�ed Simplex method for solving them, where non linear
constraints are delayed, i.e. temporarily suspended from consideration, until a su�cient
number of variables are instantiated and the constraints become linear.

In general, a CLP program is de�ned by a collection of clauses of the form

H  C1 ^ : : : ^ Cn ^ B1 ^ : : : ^Bm

where H;B1; : : : ; Bm are atoms and C1; : : : ; Cn are constraints. In Figure 2.4 we have
drawn an arc from CLP to de�nite clause programs (DCP), i.e. Logic Programming
(LP), because LP can be regarded as an instance of the CLP(D) scheme, where the
computation domain D is equal to the Herbrand universe H and the constraints are
equalities on terms.
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Finally, it is also worth noting that the arc-consistency rewrite system discussed in
the context of �nite CSPs can also be applied to general CSPs and CLP programs as
well. Consider, for example, the following CLP(R) program:

p(X)  (1 � X) ^ (X � 3);

q(Y )  (0 � Y ) ^ (Y � 2);

r(X; Y )  X � Y

Taking this set of Constraints together with a Query of the form

9X9Y [p(X) ^ q(Y ) ^ r(X; Y )]

we obtain a CSP formulation (Constraints,Query) in the sense of Section 2.2.1. Using the
same AC rewrite rule as used for �nite CSPs in Section 2.2.8, the set of Constraints is
re�ned to the �xpoint

p(X)  (1 � X) ^ (X � 2);

q(Y )  (1 � Y ) ^ (Y � 2);

r(X; Y )  X � Y:

In the previous sections, we have presented several standard, and some not-so-
standard, logical methods that can be used to solve FCSPs. The syntactic treatment
allows algorithms and results from these desperate areas to be imported, and specialized,
to FCSP. It also allows export to the related areas. By casting CSP both as a general-
ization of FCSP and as a specialization of CLP it is observed that some FCSP solving
techniques, e.g. arc-consistency rewrite rules, lift to CSP and thereby to CLP. This obser-
vation will be one of the main motivations for our work on the integration of constraint
satisfaction techniques in logic programming that will be presented in Chapter 6.

2.3 Towards E�cient Constraint Satisfaction

In Section 2.1 we have discussed how to formulate a given problem declaratively as a CSP
and in Section 2.2 we then studied how to perform constraint satisfaction in di�erent
representation and reasoning systems. Based on these considerations, we are now in a
position to focus on algorithms for e�ciently solving an FCSP.

In this section we will present a generic algorithm for solving FCSPs which basically
implements a parameterizable backtracking search process in the space of possible value
combinations. As one instance of this generic framework we obtain an implementation of
the standard backtracking approach applied to FCSP solving. This approach, however,
su�ers from several drawbacks such as thrashing and repeated computation of the same
partial solutions. The chapter will then be concluded by presenting three directions
towards the development of more e�cient FCSP solving techniques that avoid these
drawbacks. All of them have been exploited in the implementation of the Contax and
FiDo systems that will be presented in the next chapters.
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2.3.1 From generate-and-test to backtracking

Any FCSP can be solved using the generate-and-test paradigm (GT). The algorithm
FCSDA of Section 2.2.2 and the Prolog query on page 36 basically implement this
paradigm. As the assignment space D = D1 � D2 � � � � � Dn is �nite, it is possible to
systematically generate and test each n-compound label for the Variables X1 to Xn in
the CSP to see if it satis�es all the constraints. The number of combinations considered
by this method is given by the size of the Cartesian product of all the variable domains
which results in the generate-and-test algorithm being an easy to implement but very
ine�cient algorithm for solving CSPs.

A more e�cient method uses the backtracking (BT) paradigm. In this method vari-
ables are instantiated sequentially. As soon as all the variables relevant to a constraint
are instantiated, it is checked whether the constraint is satis�ed. If a partial instan-
tiation violates any of the constraints, backtracking is performed to the most recently
instantiated variable that still has alternatives available. Clearly, whenever a partial
instantiation violates a constraint, backtracking is able to eliminate a subspace from the
Cartesian product of all variable domains. The backtracking method essentially performs
an uninformed systematic search [Brown and Purdom, 1981] in the space of potential
solutions of the CSP.

2.3.2 A generic backtracking algorithm for solving FCSPs

In the following, we will present a generic algorithm for searching the space of possible
value combinations for a solution of the FCSP. The algorithm is generic in the sense that
in the essential parts it can be parameterized to obtain a concrete implementation.

For the presentation of the algorithm we need the following notions: At each time the
already instantiated variables are called past variables, the non-instantiated variables are
called future variables, and the variable which is being instantiated in the current step is
called the current variable.

1. Initialize: Assign to each variable an inde�nite value. S is empty.

2. Select variable: Select as current variable one of the variables that have
not been assigned yet. If all variables have already been assigned go to
step 5.

3. Select value: Select a non-used value as the current value for the current
variable. Mark this value as used. If there is no such value, go to step
6.

4. Test: Check all the constraints in which the current variable and the past
variables are involved. If they are satis�ed push the current variable into
S and go to step 2, otherwise go to step 3.

5. Solution: The current assignment of values to variables is a solution. If
only one solution is needed, stop, otherwise go to step 3.
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6. Backtracking: Assign an inde�nite value to the current variable. Delete
this variable from S and select the new current variable in S. If S is
empty stop as no (more) solutions can be found, otherwise go to step 3.

This algorithm can be parameterized by using di�erent orderings or ordering schemes
(static or dynamic) for variable selection (step 2), for selecting the next value for each
variable (step 3), and for past variable selection for testing (step 4). It uses a data
structure S for recording past variables and backtrack variable selection (step 6). The
implementation of this data structure as a stack, as a queue, or using some more so-
phisticated (dynamic) ordering of past variables, will be crucial for the e�ciency of a
concrete implementation. Using a stack as structure for recording past variables im-
poses a chronological ordering for backtrack variable selection. Together with a �xed
static ordering of the variables and their domains we obtain the standard backtrack-
ing paradigm as an instance of this generic schema. Using more `intelligent' methods
for backtrack variable selection based on some dependency analysis results in imple-
menting a dependency-directed [Stallman and Sussman, 1977] or intelligent backtracking
[Bruynooghe and Pereira, 1984] approach.

The temporal complexity of this core algorithm is exponential O(an) and its spatial
complexity is logarithmic O(log n), where a denotes the maximum cardinality of the
variable domains. The algorithm �nds one or all the problem solutions because it per-
forms an exhaustive search. However, the algorithm is ine�cient as it carries out more
operations than are necessary to �nd a solution. As causes of this ine�ciency can be
pointed out:

1. Thrashing: One of the reasons for the ine�ciency of the backtracking paradigm
is that it su�ers from thrashing [Gaschnig, 1979], i.e. search in di�erent parts of the
space keeps failing for the same reasons. The simplest cause of thrashing concerns unary
constraints, and is referred to as node-consistency [Mackworth, 1977]. If the domain DXi

of a variable Xi contains a value v that does not satisfy some unary constraint CfXig,
then the instantiation of Xi to v will always result in an immediate failure. Another
possible source of thrashing is illustrated by the following example.

Example 15 (thrashing) Suppose the variables in a CSP are instantiated in the order
X1; X2; : : : ; Xi; : : : ; Xj; : : : ; Xn. Suppose further that the binary constraint CfXi;Xjg is
such that for Xi = v, it disallows any value of Xj, and assume that the variables Xi+1 to
Xj�1 can take compatible values among them and with the variables X1 to Xi. Whenever
Xi is instantiated to v, the algorithm will force every variable in fXi+1; : : : ; Xj�1g to take
all possible values before changing the assignment for Xi.

The cause of this kind of thrashing is referred to as lack of arc-consistency [Mackworth,
1977]. It can be avoided by checking every time a value is assigned that some compatible
values exist in the future variable domains.

2. Repeated computation of partial solutions: The algorithm does not remember
previous actions. If the �rst value in the domain of Xi is incompatible with the �rst value
in the domain of some variable Xj with j > i + 1, this will be detected the �rst time
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a value for Xj will be assigned. However, this incompatibility will be checked again
each time that backtracking arrives to a variable previous to Xi. If the incompatibilities
detected are recorded, it is possible to avoid actions which results are already known.

2.4 Discussion and Directions for Further Work

Once the ine�ciency of the general backtracking search algorithm has been established,
the goal is to develop more e�cient algorithms for solving FCSPs. Since FCSP is NP-
complete [Mackworth, 1977], this does not mean to achieve a polynomial complexity,
but to get a better run-time performance. This can be achieved by performing only the
operations that are strictly needed to �nd a solution and to avoid all unnecessary work.
In general, e�ciency improvements tend to lose the initial simplicity of the algorithm.
The spatial complexity increases, and sometimes complexity problems in the temporal
scope are transferred to the spatial scope. However, for the topic of this thesis it is most
important to preserve the declarative problem formulation property and the generality
of the approach when studying e�ciency improvements. The main consequence for us
is, that we will not consider any specialized techniques that exploit speci�c features of
a limited class of CSPs, although it may yield substantial improvements, but not in the
general case.

In this thesis we will study two basic approaches to improve the e�ciency of constraint
satisfaction algorithms that aim at reducing the search space that has to be explored in
order to �nd a solution to the CSP. The basic idea is to modify the search space by
deleting some regions that do not contain any solutions. If substantial reductions are
made in the search space, a better performance of the search process is expected. When
all solutions have to be computed, the search space has to be explored exhaustively. In
this case a reduction in the search space means a net reduction in the time required by
the search process. There are two approaches in methods that reduce the search space:

� One approach consists of algorithms that reduce the search space prior to starting
the search process. They are called consistency-improving algorithms because all
of them are based on achieving a given level of local consistency.

� The other approach consists of algorithms that modify the search space during the
search process. They are called hybrid algorithms because the process of search is
interleaved with the reduction of the search space.

The Contax system that will be presented in Chapters 3, 4, and 5 basically im-
plements a consistency-improving algorithm which is then extended towards a hybrid
version by interleaving subsequent search with consistency checking when committing to
a value assignment.

The FiDo system to be presented in Chapters 6 and 7 basically also realizes a hybrid
algorithm. However, the focus is on improving backtracking search in logic programming,
e.g. Prolog, by using consistency-improving algorithms locally when committing to a
value assignment for a variable that is subject to a constraint rather than an ordinary
Prolog variable.
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Constraint Propagation in Contax

In the previous chapter, we have discussed several views on constraint satisfaction and
have presented a generic backtracking algorithm for solving FCSPs. This algorithm,
however, su�ers from various sources of ine�ciency. Thus, in order to improve the
e�ciency of FCSP solving, we have outlined three approaches, one of which is to reduce
the search space prior to starting the entire search process. This is the underlying
idea of constraint propagation techniques which we will discuss in Section 3.1. Based
on these considerations, Section 3.2 will then present the Contax system, a solver for
general FCSPs that we have developed at DFKI. As Contax supports constraints of
arbitrary arity, the notion of arc-consistency for binary CSPs will have to be extended
to hyperarc-consistency for general CSPs and algorithms will be presented to e�ciently
establish hyperarc-consistency in a constraint network such that the reduced search space
can be explored afterwards in order to ultimately �nd the solutions to the FCSP. The
constraint propagation techniques as well as the user-interface to Contax will again be
illustrated using the German-map coloring problem.

3.1 Constraint Propagation Techniques

As we have discussed in Section 2.3.2, one of the main causes of ine�ciency when trying
to solve an FCSP using standard backtracking is the e�ect of thrashing.

Thrashing due to node inconsistency can be eliminated by simply removing those
values from the domainsDXi

of each variableXi that do not satisfy some unary constraint
CfXig. Thrashing due to arc-consistency can be avoided if, before search starts, each arc
(Xi; Xj)

1 of the constraint graph is made consistent.

3.1.1 Arc consistency

As discussed in Section 2.2.7, an arc (Xi; Xj) is consistent if for every value v in the
current domain DXi

of Xi there is some value vj 2 DXj
such that the compound label

(hXi  vi,hXj  vji) is permitted by the constraint between Xi and Xj, in other words

1Almost all theoretical and practical work on constraint satisfaction algorithms is focused on binary
CSPs. For this reason, only binary CSPs will be considered in this section, but without loss of generality
as we have shown in Section 2.1.6.
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(hXi  vi,hXj  vji) 2 CfXi;Xjg. Note that the concept of arc-consistency is directional;
i.e. if an arc (Xi; Xj) is consistent, then it does not necessarily mean that (Xj; Xi) is also
consistent.

An arc (Xi; Xj) can be made consistent by simply deleting those values from the
domain DXi

for which the above condition is not true.2 This is what the following
procedure Revise does:

procedure Revise(Xi,Xj):
Delete  false
for each v 2 DXi

do
if there is no vj 2 DXj

such that (hXi  vi,hXj  vji) 2 CfXi;Xjg then
delete v from DXi

Delete  true
endif

endfor
return Delete

Figure 3.1: Algorithm Revise

Note that to make every arc of the constraint graph consistent, it is not su�cient to
execute Revise for each arc just once as we have seen in Section 2.2.7. Once Revise re-
duces the domain of some variable Xi, then each previously revised arc (Xi,Xj) has to be
revised again, as some elements of DXj

may no longer be compatible with any remaining
elements of the revised domain DXi

. The following algorithm performs a �xpoint itera-
tion similar to that in the arc-consistency rewrite system discussed in Section 2.2.8. It
thus obtains arc consistency for the whole constraint graph:

algorithm AC1:
Queue  set of all arcs (Xi,Xj) in the CSP
repeat

Change  false
for each (Xi,Xj) 2 Queue do

Change  Revise(Xi,Xj) _ Change
endfor

until not(Change)

Figure 3.2: Algorithm AC1

The major problem with the above algorithm is that successful revision of even one arc
in some iteration forces all the arcs to be revised in the next iteration even though only
a small number of them are a�ected by this revision. In [Mackworth, 1977] a variation of

2Note that deletions of such values do not eliminate any solutions of the CSP.
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this algorithm (called AC3) is presented that eliminates this drawback. This algorithm3

performs re-revision only for those arcs that are possibly a�ected by a previous revision.

algorithm AC3:
Queue  set of all arcs (Xi,Xj) in the CSP
while Queue not empty do

select and delete some arc (Xk,Xm) fromQueue
if Revise(Xk,Xm) then

Queue  Queue [ f(Xi,Xk)j i 6= k; i 6= mg
endif

endwhile

Figure 3.3: Algorithm AC3

Assume that the domain size for each variable is d, and the total number of binary
constraints, i.e. the arcs in the constraint graph, is e. The complexity of the AC3
algorithm is O(ed3) [Mackworth and Freuder, 1985]. In [Mohr and Henderson, 1986],
another arc-consistency algorithm, AC4, is presented which has a complexity of O(ed2).
Since the lower bound on the time complexity is O(ed2), this is also an optimal complexity
algorithm.4 However, recently it was shown that this optimality is only of theoretical
nature and that in most realistic cases \AC3 is almost always better thanAC4" [Wallace,
1993].

In Section 2.2.7, we found a solution for the German-map coloring problem simply by
enforcing arc-consistency for the corresponding constraint network. Thus, the question
arises whether for an arc-consistent constraint graph any compound label instantiating
all variables from their current domains is also a solution to the CSP, or in other words,
whether achieving arc-consistency can completely eliminate the need for backtracking?
If the domain size of each variable becomes 1 after obtaining arc-consistency as it was the
case with the Map-coloring problem, then the CSP has exactly one solution. Otherwise,
the answer is \no" in general. Consider, for example, the following sub-problem of the
German-map coloring problem restricted to only coloring the states Nordrhein-Westfalen,
Hessen, and Rheinland-Pfalz:

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA

Rheinland-
Pfalz (RP)

Nordrhein-
Westfalen (NW)

Hessen (HS)

3TheWaltz �ltering algorithm [Waltz, 1972] introduced in Chapter 1 is a special case of this algorithm,
and is equivalent to another algorithm AC2 discussed in [Mackworth, 1977].

4To verify arc-consistency, each arc must be inspected at least once which takes O(d2) steps, hence
the lower bound of O(ed2).
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If we restrict the domains to only allowing green and red as colors to be used, the
corresponding constraint network shown in Figure 3.4 is arc-consistent, but none of the
possible instantiations of the variables are a solution to the CSP.
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Figure 3.4: An arc-consistent but unsolvable constraint network

In general, even after achieving arc-consistency, a network may have no solutions (as
shown in Figure 3.4), one solution (e.g., the original German-map coloring problem), or
even more than one solution: if we do not require Hessen (HS) to be colored red in the
German-map coloring problem, we obtain the following arc-consistent constraint network
shown in Figure 3.5 from which two solutions can be derived.
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Figure 3.5: An arc-consistent constraint network with two solutions

Arc-consistency algorithms carry out a local constraint propagation [Vo� and Vo�,
1987, G�usgen and Hertzberg, 1988]. They eliminate some values from the variable do-
mains that will never appear in a solution. To solve a problem whose corresponding
graph is arc-consistent, a search algorithm with backtracking may still be needed to
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�nd the solution(s) or to discover that there is no solution because the constraints are
not globally propagated and dead-end situations can arise. Nevertheless, by making the
constraint graph arc-consistent, we can usually avoid a lot of unnecessary search in the
backtracking procedure. The backtracking search algorithm of Section 2.3.2 will show
a better performance on a locally consistent problem than on the original one because
the search tree of the former has been pruned eliminating useless paths that are present
in the search tree of the latter. Given the polynomial complexity of local consistency
algorithms, they can be used as a preprocess to improve the problem structure before
the search process starts. Figure 3.6 illustrates the gains in pruning the search space by
using local constraint propagation before search:

Search space pruned by enforcing node-consistency

Search space pruned by enforcing arc-consistency

Remaining search space to be explored
Solution to the CSP

Figure 3.6: Search space reduction by local constraint propagation

Waltz showed that for the problem of labeling polyhedral scenes, arc-consistency sub-
stantially reduced the search space [Waltz, 1972]. In some of the instances of this problem,
the solution was found after no further search. However, if in the Map-coloring problem
we also omit the other initial assignments for Hamburg (HH), Bremen (HB), and Saar-
land (SL), then the initial constraint graph is already arc-consistent and thus enforcing
arc-consistency will not reduce the search space at all.

3.1.2 Higher-level consistency

Having seen that arc-consistency is not su�cient to eliminate the need for backtracking,
we will now investigate whether there is a stronger notion of consistency that may elim-
inate the need for search. The notion of k-consistency de�ned below captures di�erent
degrees of consistency for di�erent k.

De�nition 20 (k-consistency) The corresponding constraint graph for a CSP (V; �; C)
is k-consistent if for all subsets of k � 1 variables fXi1 ; : : : ; Xik�1g � V and for each
compound label Lk�1 =(hXi1  vi1i; : : : ;hXik�1  vik�1i) that satis�es all constraints c
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among the k�1 variables, i.e. satis�es(Lk�1; c)^ c 2 C ^vars(c) � fXi1; : : : ; Xik�1g, then
for each other variable Xik 2 V � fXi1; : : : ; Xik�1g there exists a value vik 2 DXik

such
that the extended k-compound label Lk =(hXi1  vi1i, : : :, hXik�1  vik�1i, hXik  viki)
satis�es all constraints ĉ on the k variables Xi1; : : : ; Xik�1 ; Xik, i.e. the following holds:
satis�es(Lk; ĉ) ^ ĉ 2 C^vars(ĉ) � fXi1; : : : ; Xik�1 ; Xikg

De�nition 21 (strong k-consistency) A constraint graph is strongly k-consistent if
it is j-consistent for all j � k.

Node-consistency discussed earlier is equivalent to strong 1-consistency, and arc-
consistency is equivalent to strong 2-consistency. Strong 3-consistency is related5 to the
concept of path-consistency de�ned in [Montanari, 1974]. Algorithms exist to make a
constraint graph strongly k-consistent for k > 2. Clearly, if a constraint graph containing
n nodes is strongly n-consistent, then a solution to the corresponding CSP can be found
without any search. But the complexity of the algorithm for obtaining n-consistency
in an n-node constraint graph is also exponential. If the graph is only k-consistent for
k < n, then in general, backtracking cannot be avoided.

3.1.3 Backtrack-free search

Although in the general case, k-consistency for k < n does not su�ce to eliminate
backtracking at all, we can identify a certain class of FCSPs for which solutions can be
found backtrack-free after achieving some level of k-consistency for k < n.

De�nition 22 (ordered constraint graph) An ordered constraint graph is a con-
straint graph whose nodes have been ordered linearly. A linear order on the variables
in a CSP induces a corresponding ordered constraint graph.

Note that in the backtracking paradigm, the variables of a CSP can be instantiated in
many di�erent orders (cf. step 2 in Section 2.3.2). Each ordered constraint graph of a
CSP provides one such order of variable instantiations. It turns out that for some CSPs,
some orderings of the constraint graph are better than other orderings in the following
sense: if the backtracking algorithm uses these orderings to instantiate the variables,
then it can �nd a solution to the CSP without search, i.e. the �rst path searched by
backtracking leads to a solution.

Next, we de�ne the concept of width of a constraint graph which will be used to
identify such CSPs.

De�nition 23 (width) The width at a node in an ordered constraint graph is the num-
ber of arcs that lead from the node to the previous nodes in the linear order. The width
of an ordered constraint graph is the maximum of the width of its nodes. The width of a
CSP is the minimum width of all the corresponding ordered constraint graphs.

Hence, the width of a CSP depends on the structure of the corresponding constraint
graph.

5For complete constraint graphs, i.e. graphs in which there is a constraint between every pair of
nodes, strong 3-consistency is identical to path-consistency.
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Example 16 (width of the German-map coloring problem) The width of the
German-map coloring problem without taking into account the initial assignments of
colors for Hamburg, Bremen, Hessen, and Saarland is 2. The variables (nodes) can be
ordered as shown in Figure 3.7 (from left to right):
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Figure 3.7: A constraint graph for the map-coloring problem with width 2

We can now prove the following proposition which relates the degree of k-consistency
needed to achieve backtrack-free search to the width of a CSP:

Proposition 3 (backtrack-free search) If a constraint graph is strongly k-consistent,
and k > w where w is the width of the CSP, then the search for solutions to the CSP can
be performed backtrack-free.

Proof. If w is the width of the graph, then there exists an ordering of the graph such
that the number of arcs (constraints) that lead from one node of the graph to the previous
nodes in the linear order is at most w. Now, if the variables are instantiated using this
ordering in the backtracking paradigm, then whenever a new variable is instantiated, a
value for this variable consistent with all previous assignments can be found because: (1)
this value has to be consistent with the assignments of at most w past variables that are
connected to the current variable, (2) the graph is k-consistent, and (3) k > w. 2

It is relatively easy to determine the ordering of a given constraint graph that has min-
imum width w. It seems that all we need to do is to enforce strong (w + 1)-consistency
using the algorithms in [Freuder, 1978]. Unfortunately, for k > 2, the algorithm for
obtaining k-consistency adds extra arcs in the constraint graph, which can increase the
width of the graph. This means that a higher degree of consistency has to be achieved
before a solution can be found without any backtracking. In most cases, even the al-
gorithm for obtaining strong 3-consistency adds so many arcs in the original n-variable
constraint graph that the width of the resulting graph becomes n [Kumar, 1992]. But,
however, we can use node-consistency or arc-consistency algorithms to make the graph
strongly 2-consistent. None of these algorithms adds any new nodes or arcs to the con-
straint graph. Hence, if a constraint graph has width 1 , then after making it node- and
arc-consistent, we can obtain a solution to the corresponding CSP without backtracking.

Interestingly, all tree-structured constraint graphs have width 1, i.e. at least one of the
orderings of a tree-structured constraint graph has width equal to 1. Hence, if a given
CSP has a tree-structured graph, it can be solved without any backtracking once it has
been made node- and arc-consistent.

Example 17 (tree-structured constraint graph) The constraint graph for the
German-map coloring problem (cf. Figure 2.5) can be transformed into a tree-structured
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constraint graph by substituting each node that has already been assigned a de�nite value
in the initial problem statement (HH, HB, HS, and SL) by one copy of the node for each
arc connecting the node with any other nodes.

��
��
SH ��
��
NS

��
��
HB

��
��
NW ��
��
RP

��
��
SL

��
��
BW ��
��
BY

��
��
HH1

�
�
��

��
��
HH2

�
�
��

��
��
HS1

A
A
AA

��
��
HS2

A
A
AA

��
��
HS3

A
A
AA

��
��
HS4

A
A
AA

��
��
HS5

A
A
AA

Figure 3.8: A tree-structured constraint graph for the map-coloring problem

A generalization for constraint graphs of any width is adaptive consistency which
means to require a di�erent consistency level for each node depending on the width of
the node. Given a node ordering, the adaptive consistency algorithm visits the nodes in
the inverse order. For each node Xi its width wi is calculated, and a level of (wi + 1)-
consistency is achieved between the current node Xi and the set of nodes previous to Xi

in the ordering and which Xi is connected with.

It can be shown that each ordered constraint graph processed with the adaptive con-
sistency algorithm becomes backtrack-free [Dechter and Pearl, 1988a]. However, the
temporal complexity of this algorithm is exponential in the graph width. Therefore,
although an upper bound for this complexity can be calculated in advance in polyno-
mial time for a given graph, for arbitrary CSPs it is unlikely that enforcing adaptive-
consistency will really pay o�. The same is true for several other techniques that take
advantage of the structure of the constraint graph, e.g. cycle-cutsets [Dechter and Pearl,
1986], tree-clustering [Dechter and Pearl, 1988b], and stable sets [Freuder and Quinn,
1985].

Deciding the level of consistency that should be enforced on the network before start-
ing backtracking search for a solution is not a clear-cut choice. Generally speaking,
backtracking will bene�t from representations that are as explicit as possible, having
higher consistency level. However, we have seen that in general the complexity of en-
forcing k-consistency is exponential in k, and thus there is a trade-o� between the e�ort
spent on preprocessing and that spent on search (backtracking)6.

As we are interested in preserving declarativity and e�ciency for a large class of
problems, we will focus on building a system that performs best on the problems that
are most likely to appear in real-life applications.

6Experimental analyses of this trade-o� have been published in [Dechter and Meiri, 1989] and [Har-
alick and Elliott, 1980].
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3.2 The Contax System

Although specialized consistency algorithms allow for solving some CSPs very e�ciently,
e.g. those that can be represented by tree-structured constraint graphs, our main interest
is to be able to solve those problems e�ciently that are expected to occur in real-life
applications.

One crucial point in this context comes with the fact that almost all consistency
algorithms that can be found in the literature are limited to dealing with binary CSPs.
As long as the application to be tackled �ts into this restricted view, techniques like
adaptive consistency may be well used on problems with small width. However, in most
applications the constraints are not necessarily of binary nature. Also, transforming a
general CSP into a binary one as discussed in Section 2.1.6 will not be of much help
as the structure of the corresponding constraint graph for the resulting binary CSP will
rarely exhibit the nice properties like small width that the specialized algorithms require
to be e�ciently applicable.

Therefore, for the design of the Contax constraint solver, we will focus on solving
general CSPs directly without transforming them into binary CSPs, and on using a
general arc-consistency algorithm for preprocessing the CSP before starting backtracking
search.

3.2.1 The basic consistency algorithm in Contax

In order to be able to deal with general CSPs, we will �rst extend the concept of arc-
consistency towards consistency of constraints over an arbitrary number of variables.
What arc-consistency means for constraint graphs, can be lifted to hyperarc-consistency
for constraint hypergraphs that represent general CSPs.

De�nition 24 (hyperarc-consistency) A given k-ary constraint C with vars(C) =
fX1; : : : ; Xkg is hyperarc-consistent if for all variables X 2 vars(C) and all values from
the current domain of X there are values in the domains of the remaining variables such
that the simultaneous assignment of these k values satis�es the constraint C, i.e. the
following holds:

8Xj 2 vars(C) :
8vj 2 DXj

:
9v1 2 DX1

; : : : ; vj�1 2 DXj�1
; vj+1 2 DXj+1

; vk 2 DXk
:

satis�es((hX1  v1i,hX2  v2i,: : :,hXk  vki); C)

A general CSP is hyperarc-consistent if all its hyperarcs (constraints) are hyperarc-
consistent.

Note that this notion of hyperarc-consistency is undirected as opposed to arc-consistency
as de�ned on page 38 (De�nition 19) because each binary constraint on variables Xi and
Xj was represented by two (directed) arcs (Xi; Xj) and (Xj; Xi) which are both checked
for (directed) arc-consistency.
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In order to implement an algorithm for enforcing hyperarc-consistency, a straightfor-
ward approach is to implement a procedure HyperRevise in the style of the Revise
procedure (Figure 3.1 on page 48) for enforcing arc-consistency for a binary constraint.

procedure HyperRevise(c):
Delete  false
for each Xj 2 vars(c) do

for each vj 2 DXj
do

if there are no v1 2 DX1
; : : : ; vj�1 2 DXj�1

; vj+1 2 DXj+1
; : : : ; vk 2 DXk

such that satis�es((hX1  v1i,hX2  v2i,: : :,hXk  vki); c)
then

delete vj from DXj

Delete  true
endif

endfor
endfor
return Delete

Figure 3.9: Preliminary procedure HyperRevise

For achieving hyperarc-consistency for the whole constraint network, all constraints
in the CSP have to be checked using HyperRevise, and the removal of values from
some variable domains must be propagated to connected constraints as it may a�ect
their hyperarc-consistency. This can be done in a similar way as in the AC-3 algorithm
(Figure 3.3 on page 49) by adding the possibly a�ected constraints again on the queue
of constraints that have to be checked for hyperarc-consistency.

algorithm HyperAC3:
Queue  set of all constraints in the CSP
while Queue not empty do

select and delete some constraint c from Queue
if HyperRevise(c) then

Queue  Queue [ fĉ 2 C j vars(ĉ) \ vars(c) 6= ;g
endif

endwhile

Figure 3.10: Preliminary algorithm HyperAC3

However, even ifHyperRevise(c) decreases the domain of only one variable of c, then
theHyperAC3 algorithmwill put all constraints ĉ on the Queue that share any variables
with c, no matter whether the domain of at least one of these shared variables has been
modi�ed by HyperRevise and thus ĉ needs to be checked again. This obviously results
in a lot of unnecessary calls to HyperRevise for constraints which variable domains
have not changed at all since the last time the constraint had been checked.



3.2 The Contax System 57

Therefore, the procedure HyperRevise has to be extended to keep track of which
variable domains have been decreased and to return this information to the HyperAC3
algorithm. By using a vector of booleans instead of a single boolean variable, Delete, the
modi�ed HyperRevise procedure can be modi�ed as follows:

procedure HyperRevise(c):
Delete[X]  false for all variables X 2 vars(c)
for each Xj 2 vars(c) do

for each vj 2 DXj
do

if there are no v1 2 DX1
; : : : ; vj�1 2 DXj�1

; vj+1 2 DXj+1
; : : : ; vk 2 DXk

such that satis�es((hX1  v1i,hX2  v2i,: : :,hXk  vki); c)
then

delete vj from DXj

Delete[Xj]  true
endif

endfor
endfor
return Delete[X1; : : : ; Xk]

Figure 3.11: Procedure HyperRevise

This more detailed information about which variable domains have been decreased by
HyperRevise can be used in theHyperAC3 algorithm such that only those constraints
will be put on the Queue that share at least one variable with the current constraint whose
domain has been restricted:

algorithm HyperAC3:
Queue  set of all constraints in the CSP
while Queue not empty do

select and delete some constraint c from Queue
Delete[: : :]  HyperRevise(c)
Queue  Queue [ fĉ 2 C j 9X 2 vars(ĉ) \ vars(c) : Delete[X] = true g

endwhile

Figure 3.12: Algorithm HyperAC3

Careful investigation of the above algorithm shows that in case the constraints c and
ĉ in the de�nition of the HyperAC3 algorithm share a variable X whose domain has
been restricted; then in a later step when taking ĉ from the Queue, HyperRevise(ĉ)
will perform the outer loop also on the variable X. But as the domains of the other
variables in ĉ have not changed, this step is not necessary.

To remedy this, we can modify the algorithm such that the Queue holds constraint-
variable pairs instead of constraints only. Then, the HyperAC3 algorithm will in each
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step take one such pair (c;Xj) from the Queue and run only the inner loop of Hy-
perRevise on c and Xj. This inner loop can also be regarded as enforcing directed
hyperarc-consistency for a constraint C focusing on the variable Xj.

procedure DirectedHyperRevise(c;Xj):
Delete  false
for each vj 2 DXj

do
if there are no v1 2 DX1

; : : : ; vj�1 2 DXj�1
; vj+1 2 DXj+1

; : : : ; vk 2 DXk

such that satis�es((hX1  v1i,hX2  v2i,: : :,hXk  vki); c) holds
then

delete vj from DXj

Delete  true
endif

endfor
return Delete

Figure 3.13: Procedure DirectedHyperRevise

It is also worth mentioning that in the case of binary CSPs DirectedHyperRevise
is equivalent to Revise because each arc (Xi; Xj) representing a binary constraint c in
one direction is represented here as the pair (c;Xi). The complementary arc (Xj; Xi) is
represented as the pair (c;Xj) accordingly.

If DirectedHyperRevise will remove a value from the domain of Xj, then for all
constraints ĉ that share the variable Xj with c, (including c itself) all pairs (ĉ; Xk) with
Xk 2 vars(ĉ) and Xk 6= Xj will have to be put on the Queue to be checked again. Thus,
we obtain the following algorithm for enforcing hyperarc-consistency that constitutes the
kernel of the Contax constraint solver:

algorithm EnforceHyperArcConsistency:
Queue  f(c;X) j c 2 C;X 2 vars(c)g
Consistent  true
while Queue not empty and Consistent do

select and delete some pair (c;X) from Queue
if DirectedHyperRevise(c;X) then

Queue  Queue [ f(ĉ; Xk) j ĉ 2 C;X 2 vars(ĉ); Xk 2 vars(ĉ); X 6= Xkg
if DX = ; then Consistent  false endif

endif
endwhile
return Consistent

Figure 3.14: Algorithm EnforceHyperArcConsistency

Again, when considering binary constraints only, we obtain the AC3 algorithm as a
special case of the EnforceHyperArcConsistency algorithm.
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3.2.2 Termination and complexity considerations

As we are dealing with �nite constraint satisfaction problems, we can easily prove that
the algorithm EnforceHyperArcConsistency will always terminate.

Lemma 1 (Termination of DirectedHyperRevise)
The procedure DirectedHyperRevise always terminates.

Proof. As the domains of all variables are �nite, there are only �nitely many val-
ues vj 2 DXj

and only �nitely many values in the domains of the other variables
X1; : : : ; Xj�1; Xj+1; : : : ; Xk. Thus, only a �nite number of compound labels have to
be checked for satisfying the given constraint c. 2

Proposition 4 (Termination of EnforceHyperArcConsistency)
The algorithm EnforceHyperArcConsistency always terminates.

Proof. The algorithm terminates as soon as Queue becomes empty. As the number of
constraints and the number of variables in an FCSP are �nite, there are only �nitely
many possible values (pairs) on the Queue. In each step, the number of pairs on the
Queue is �rst reduced by one, but in case that DirectedHyperRevise returns true,
a �nite number of pairs is added to Queue and thus the number of pairs on the Queue
may increase. However, DirectedHyperRevise can only �nitely often return true as
in each such case one value is deleted from some variable's domain. Therefore, Queue
can only �nitely often be increased by a �nite number of pairs, and hence after �nitely
many steps, it will become empty. Thus, the algorithm will always terminate. 2

In the following, we will also prove that for any �xed maximum arity k of
the constraints in a CSP, EnforceHyperArcConsistency will establish hyperarc-
consistency in polynomial time.

Lemma 2 (Complexity of DirectedHyperRevise) Let d be the maximum domain
size and k be the maximum arity of the constraints, then the temporal complexity of
DirectedHyperRevise is O(dk).

Proof. There are at most d values vj 2 DXj
for which at most dk�1 value combinations

from the domains of the other variables X1; : : : ; Xj�1; Xj+1; : : : ; Xk can be found that
have to be checked for satisfying the given constraint c. Checking a compound label L
for satisfying a constraint c means checking whether L 2 c. It can thus be regarded a
constant-time operation. Hence, the overall complexity is O(dk). 2

Proposition 5 (Complexity of EnforceHyperArcConsistency) Given a �nite
constraint satisfaction problem with e constraints of maximum arity k and n variables
ranging over domains with maximum cardinality d. Then, for each �xed value for k the
algorithm EnforceHyperArcConsistency has a polynomial temporal complexity.

Proof. The complexity considerations are based on the observation that new pairs can
be added on the Queue only if DirectedHyperRevise returns true which can happen
at most d�n times, because each time one value is deleted from some variable's domain.
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Whenever new constraint-variable pairs are put on the Queue, their number is limited by
e� n. Therefore, DirectedHyperRevise will be called at most dn� en times, which
results in an overall complexity for the algorithm EnforceHyperArcConsistency
of O(n2edk+1). Hence, for any �xed k, the time that it needs to establish hyperarc-
consistency is limited by a polynomial function in the number of variables, constraints,
and the maximum domain size. 2

We already recognized that the AC3 algorithm can be seen as a special instance of
the EnforceHyperArcConsistency algorithm. When considering only binary con-
straints (k = 2), hyperarc-consistency reduces to arc-consistency and can be established
using the EnforceHyperArcConsistency algorithm in time cubic in the domain
size|just as with the AC3 algorithm presented in Section 3.1.1.

Thus, we have shown that the EnforceHyperArcConsistency algorithm pro-
vides an e�cient means to establish hyperarc-consistency for a given CSP, such that the
resulting variable domains can be e�ciently searched to �nally obtain a solution to the
CSP. This algorithm constitutes the kernel of the Contax system that will be presented
in the following section.

3.2.3 The Contax system architecture

The EnforceHyperArcConsistency algorithm presented in the previous section
is used in Contax to establish hyperarc-consistency in the constraint network that
corresponds to a given CSP. In Section 3.1.1 we have seen that, in general, arc-consistency
in binary CSPs does not su�ce to avoid backtracking search for ultimately solving the
problem. The same is obviously true for hyperarc-consistency in the case of general
CSPs. Therefore, in Contax we use the EnforceHyperArcConsistency algorithm
for preprocessing the constraint network and then explore the remaining search space by
using a backtracking search algorithm, called GenerateSolutions, which instantiates
the generic backtracking search schema presented in Section 2.3.2 as follows:

� The GenerateSolutions algorithm runs only on those variables that have not
already been assigned a single value by EnforceHyperArcConsistency. The
other variables which have already been labeled are considered as past variables.

� For variable selection (step 2), the algorithm uses a �rst-fail heuristics which selects
as current variable the one with the currently smallest domain. The idea is that by
using this heuristics invalid assignments to past variables can be discovered earlier
as a smaller number of values for the current variable have to be tried unsuccessfully.

� Most important, the test for consistency of the current assignment (step 4) is
performed not only on the current and past variables but also involving the future
variables: the domain of the current variable is temporarily restricted to hold only
the one value that has been selected in step 3; then the algorithm again tries to
establish hyperarc-consistency in the constraint network. If it succeeds, the value
assignment passed the test, otherwise not. Thus, the algorithm performs search
space reduction not only before search starts (preprocessing) but also dynamically
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each time a value assignment is committed to. As the domain of the current variable
is set to hold the selected value when checking consistency, the algorithm maintains
a data structure �Xi

that holds the remaining values that can be tried for Xi.

� Backtracking (step 6), if necessary, is organized using a stack-based data struc-
ture for recording past variable selections. Thus, the algorithm basically performs
chronological backtracking. Because checking consistency may also reduce the do-
mains of some future variables in contrast to the generic backtracking scheme, these
restrictions have to be undone when backtracking to an earlier variable. Therefore,
choice points on the stack S do not only contain the variable Xi itself to which the
system can backtrack but also stores the remaining values �Xi

that can be tried
for Xi and, most important, the current domains DXj

for all variables Xj that have
not yet been instantiated.

Figure 3.15 presents the algorithm GenerateSolutions as it is used in the current
implementation of the Contax system.

algorithm GenerateSolutions:

Init: if EnforceHyperArcConsistency = false then stop endif
SelVar: select a variable Xi 2 V with minimum j DXi

j > 1
if there is no such variable left then goto Success endif
�Xi
 DXi

SelVal: if �Xi
= ; then goto Backtrack endif

select and delete a value v 2 �Xi

DXi
 fvg

Check: Inconsistent  false
Queue  f(c;X) j c 2 C;Xi 2 vars(c); X 2 vars(c); Xi 6= Xg
while Queue not empty and not(Inconsistent) do

select and delete some pair (c;X) from Queue
if DirectedHyperRevise(c;X) then

Queue  Queue [ f(ĉ; Xk) j ĉ 2 C; fX;Xkg � vars(ĉ); Xk 6= Xg
if DX = ; then Inconsistent  true endif

endif
endwhile
if Inconsistent then goto SelVal endif
push choice point (Xi;�Xi

; fDXj
j Xj not yet assignedg) on S

goto SelVar
Success: print solution: DX1

; DX2
; : : : ; DXn

if more solutions required then goto SelVal else stop endif
Backtrack: if S is empty then stop endif

restore Xi, �Xi
, and the domains DXj

from the top element in S
delete the top element from S
goto SelVal

Figure 3.15: Algorithm GenerateSolutions
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In the next section, we will now study how the Contax system appears to the user,
that is, how FCSPs have to be formulated for being solved by Contax using the Gen-
erateSolutions algorithm.

3.2.4 A user's view on Contax

An FCSP basically consists of a set of variables ranging over some �nite domains and a
set of constraints. Thus, in order to support the formulation of an FCSP in Contax,
the system has to provide means for representing domains, variables, and constraints.

When using a constraint solver in practice, it often appears that many variables range
over the same domain, or that an instance of the same constraint is required to hold
on various sets of variables. Therefore, in designing the Contax system we decided
to provide domain and constraint de�nitions separately from the concrete variables and
constraints that constitute a constraint network for the given FCSP. In order to use
Contax for representing and solving an FCSP, one has to perform the following tasks:

Define the domains occurring 
in an application area

Define the constraints occurring
in an application area

Create variables for all relevant 
objects in the general problem

Link the variables by installing
constraint instances between them

Formulate the problem-specific initial 
assignments and call the Contax solver

once for an application area

once for a general problem

once for a specific problem

Figure 3.16: Five steps in representing and solving a CSP with Contax

The main advantages of this stepwise domain and problem formulation are that Contax
supports

� de�ning the domains and constraint types occurring in an application area inde-
pendently from any concrete problem (de�ning the problem area),

� then creating a constraint network for a given problem independently from the
concrete values for some parameters (de�ning the problem in general), and
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� �nally incorporating the concrete data for one speci�c problem instance to be
solved.

De�ning the problem area (domains and constraints)

Domains in Contax are �nite discrete sets of values. They can be easily de�ned by
enumerating all elements in a domain. For example, the statement

(def-domain colors (red green blue))

introduces a new domain named colors that holds the set of colors that can be used in
the map-coloring example.

Contax provides di�erent types of constraints: primitive (or extensional), predica-
tive, and compound constraints. All constraint types may be de�ned over any number
of variables.

Primitive constraints are de�ned by enumerating all the value combinations (com-
pound labels) that satisfy the constraint. Since basically to check whether a compound
label satis�es the constraint is the same as to lookup a database, this kind of constraint
can also be regarded as a database constraint. Consider, for example, the following
de�nition of a constraint requiring di�erent colors to be assigned to its variables:

(def-primitive-constraint different-colors

:interface (color1 color2)

:domains (colors colors)

:tuples ((red green)

(red blue)

(green red)

(green blue)

(blue red)

(blue green)))

Some constraints occurring in a real-life application are di�cult or even impossi-
ble to be explicitly enumerated as primitive constraints. This is true, for example, for
equalities, inequalities or numerical comparisons. Therefore, Contax allows for de�n-
ing a constraint by providing a Lisp function or Lisp expression (as argument to the
:predicate keyword) which then will be evaluated each time to test a given compound
label for satisfying the constraint.7 Consider again the different-colors constraint
in the map-coloring example. This constraint can also be de�ned as such a predicative
constraint as follows:

(def-predicative-constraint different-colors

:interface (color1 color2)

:domains (colors colors)

:predicate (not (equal color1 color2)))

7Note that this extension is compatible with our de�nitions so far if we extend de�nition 10 on page 27
accordingly.
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Often it may happen that the same constraint subnet occurs many times between
di�erent variables of the entire CSP. Therefore, it becomes very useful to de�ne this
subnet as a compound constraint which itself represents an entire constraint net. Local
variables of the constraint subnet that only serve to connect local constraints need not
to occur in the :interface list.

For example, one may be interested in de�ning an inequality constraint over three
variables in the map-coloring problem. In Contax this can be easily done by de�n-
ing a compound constraint that combines three binary inequality constraints into one
constraint of the following form:

(def-compound-constraint different3

:interface (color1 color2 color3)

:constraints ((different-colors color1 color2)

(different-colors color1 color3)

(different-colors color2 color3)))

De�ning the problem in general

For software engineering reasons, the Contax system is implemented in an object-
oriented fashion using the Common Lisp Object System (CLOS) [Bobrow et al.,
1988] such that constraint networks are directly represented as networks of CLOS ob-
jects. Therefore, the constraint network for a given CSP can simply be built by �rst
creating objects representing variables and then linking variables together by creating
instances of the constraint classes that have been de�ned before.

For example, the variables HH and SH that represent the colors assigned to Hamburg
and Schleswig-Holstein respectively are created as follows:

(make-variable :name HH

:domain colors)

(make-variable :name SH

:domain colors)

After having created variable objects for all problem variables, the problem constraints
can then be posed on the variables by creating constraint instances and connecting them
to the variables that they shall constrain.

For example, the constraint named C1 requiring that Hamburg and Schleswig-Holstein
should be colored di�erently can directly be represented by creating an instance of the
different-colors constraint and linking this constraint instance to the variables HH

and SH:

(make-constraint :name C1

:type different-colors

:color1 HH

:color2 SH)
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By using this object-oriented implementation and representation schema, theContax
system provides a user interface for formulating constraint satisfaction problems very
declaratively.

As an example, Figure 3.17 shows (one possible) Contax representation of the
German-map coloring problem using a compound constraint for combining all neigh-
boring constraints between the states. Of course, we could also explicitly create as many
instances of the different-colors constraint as there are borders between states in
Germany; this is exactly what the Contax system automatically does when creating an
instance of the compound constraint german-map-coloring.

(def-domain colors (red green blue))

(def-primitive-constraint different-colors

:interface (color1 color2)

:domains (colors colors)

:tuples ((red green) (red blue) (green red)

(green blue) (blue red) (blue green)))

(def-compound-constraint german-map-coloring

:interface (SH HH NS HB NW HS RP SL BW BY)

:constraints ((different-colors SH HH) (different-colors SH NS)

(different-colors HH NS) (different-colors NS HB)

(different-colors NS NW) (different-colors NS HS)

(different-colors NW HS) (different-colors NW RP)

(different-colors HS RP) (different-colors HS BW)

(different-colors HS BY) (different-colors RP SL)

(different-colors RP BW) (different-colors BW BY)))

(make-variable :name SH :domain colors)

(make-variable :name HH :domain colors)

(make-variable :name NS :domain colors)

(make-variable :name HB :domain colors)

(make-variable :name NW :domain colors)

(make-variable :name HS :domain colors)

(make-variable :name RP :domain colors)

(make-variable :name SL :domain colors)

(make-variable :name BW :domain colors)

(make-variable :name BY :domain colors)

(make-constraint :name german-map-coloring-problem

:type german-map-coloring

:SH SH :HH HH :NS NS :HB HB :NW NW

:HS HS :RP RP :SL SL :BW BW :BY BY)

Figure 3.17: Representing the German-map coloring problem in Contax
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Solving a speci�c problem instance with Contax

Once a CSP has been represented in Contax, the system is ready to start searching for a
solution to the CSP. Many real-life CSPs are often de�ned once very generally, and then
several concrete instances have to be solved that di�er, e.g., only in some initial value
assignments for some variables. Therefore, Contax allows to specify initial assignments
for a subset of the variables when starting to solve a CSP.

For example, in the German-map coloring problem the assignments for Hamburg,
Bremen, Hessen, and Saarland can be speci�ed when �nally submitting the problem to
Contax for computing a consistent map-coloring. The following call to the function
solve starts solving the map-coloring problem and returns the following list of all, here
exactly one, solutions.

(solve german-map-coloring-problem

:HH (red) :HB (red) :HS (green) :SL (red)

:solutions all)

=) ((SH HH NS HB NW HS RP SL BW BY)

(green red blue red red green blue red red blue))

Figure 3.18: Solving the German-map coloring problem with Contax

The only di�erence between creating an instance of the compound constraint
german-map-coloring and creating 14 seperate instances of the different-colors con-
straint is the following: Although in both ways Contax generates exactly the same
network of clos objects, in the latter case we cannot provide a name for our constraint
problem to later refer to it. Thus, the only way then to restrict propagation to the con-
straints involved in the map-coloring problem would be to provide a list of them with
the call to the function solve or to simply propagate all8 constraints in case there are
no other constraints currently present in the system. At the end of the next chapter, we
will show how to represent and solve an extended version of the Map-coloring problem
with Contax (Figure 4.9 on page 87). There we will need to explicitly create constraint
instances for each border and will thus have to run Contax on all constraint instances
presently known to the system.

3.3 Discussion and Related Work

So far, we have now presented the kernel of the Contax system which allows for declar-
atively representing �nite constraint satisfaction problems. In Section 3.2.2, we have also

8Trying to solve all constraints can only become a problem if there are several independant con-
straint networks loaded into Contax. Even if all but the one we are interested in would be in a
consistent state, using the `all' option would initially check all constraints, i.e. put them on the queue
for EnforceHyperArcConsistency.
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seen that the basic consistency algorithm used in Contax supports an e�cient prepro-
cessing of the constraint network such that the remaining search space can be explored
afterwards using an instance of the generic backtracking search algorithm introduced
in Section 2.3.2. Thus, the Contax system as presented in this chapter already helps
declarativity meet e�ciency.

The functionality of the Contax kernel is not very di�erent from other CSP solvers.
Indeed, it was initially inspired by G�usgen's Consat system [G�usgen, 1988] from where
also some terminology and syntax has been taken. Consat also provides means for a
purely declarative problem formulation as Contax does. However, as e�cient problem
solving is concerned, the algorithms implemented in Contax clearly outperform the
results obtained with Consat9. Parts of the e�ciency of the Contax system stems
from its object-oriented implementation and from the compilation of constraint networks
into networks of CLOS objects such that constraint propagation is mapped to message
passing on the level of clos objects.

In contrast to Contax, Consat o�ers an indexing mechanism that uses dependancy
structures to record the information about satisfying compound labels that have been
generated when checking hyperarc-consistency. By using these index structures, some
amount of backtracking search can be avoided. However, when running Consat in
:INDEXED mode on some non-toy problems it appeared that indexing structures rapidly
became very large and their maintenance soon required most of the time that was gained
by avoiding some backtrack search. Therefore, no indexing mechanism has been im-
plemented in Contax; instead, backtracking search was interleaved with consistency
checking. This approach appears to be less sensitive to growing size (in the number of
constraints) of a problem and therefore seems well suited for tackling real-life applica-
tions. It will therefore be used as the implementational basis for further extensions of
our approach that are needed to make use of some special characteristics of and to meet
the requirements posed by real-life applications.

In the next chapter, we will now investigate how to extend our approach in order to
be able to deal with overconstrained problems which very often occur in various real-life
applications and which cannot be dealt with using standard CSP techniques|also not
with the Contax system as we have presented it so far. Hence, extending our approach
towards dealing with overconstrained problems will also contribute to let theory meet
application.

9We have installed and tested the Allegro CommonLisp implementation of Consat on a Macintosh
IIfx and compared with Contax in Lucid CommonLisp on a Sun 4. Even when taking into account the
di�erent hardware environment by using a factor of 3 to get runtime results comparable, most of the
benchmarks still ran 5 to 12 times faster using Contax.
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4

Partial Constraint Satisfaction and

Constraint Relaxation

In the previous chapter, we have discussed basic constraint propagation techniques and
their extension to dealing with constraints of arbitrary arity, and have presented their
realization in the Contax system. Contax as presented so far, provides an e�cient
tool for solving FCSPs|as long as they are solvable at all.

However, in real-life applications we are often faced with problems for which no so-
lution exists satisfying all constraints and which therefore have to be relaxed in some
way to become at least partially solvable. This class of partial constraint satisfaction
problems (PCSPs) will be studied in Section 4.1 and will be illustrated by our running
map-coloring example. In Section 4.2, we will then present techniques for solving such
overconstrained problems by using constraint relaxation methods. The methods devel-
oped will enable us to solve an overconstrained problem as good as possible. This will
then lead us to the problem of how to measure the quality of an approximate solution, or
the other way around, how to identify di�erent degrees of relaxation. These discussions
will again be motivated by using an extension of the German-map coloring problem that
will illustrate the basic issues for constraint relaxation. As constraint relaxation has
been identi�ed as a crucial topic for solving real-life application problems, Section 4.3
will �nally present how Contax has been extended to support weighted constraints and
how to perform constraint relaxation using these weights.

4.1 Partial Constraint Satisfaction Problems

Standard constraint satisfaction methods halt when no solution can be found satisfying
all constraints simultaneously. In contrast, partial constraint satisfaction involves �nding
values for the variables that satisfy a subset of the constraints [Freuder, 1992]. This
means, we are willing to relax some of the constraints to permit additional acceptable
value combinations. Partial constraint satisfaction problems arise in several contexts:

� The problem is overconstrained and admits of no complete solution.

� The problem is too di�cult to solve completely but we are willing to settle for a
\good enough" solution.
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� We are seeking the best solution obtainable within �xed resource bounds.

� Real time demands require an any-time algorithm, which can report some partial
solution almost immediately, improving on it if and when time allows.

Let us again consider our running map-coloring example. In Chapter 2 we introduced
the German-map coloring problem limited to coloring the political map of West Germany
as of before the reuni�cation in 1990 (Problem 1, page 23). We will now update this
problem and extend it by including the new eastern states:

Problem 2 (Extended German-map coloring problem) The extended German-
map coloring problem is to decide how to color the political map of Germany as shown in
Figure 4.1 using only three colors, red, blue, and green, such that neighbored states are
colored di�erently.
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Brandenburg (BB)

Figure 4.1: The political map of reuni�ed Germany

It can be easily shown that this problem is overconstrained, i.e. it is impossible to
color the political map of Germany with three colors such that all neighboring states are
colored di�erently. Consider the state Th�uringen which is surrounded by a ring of �ve
neighboring states. One color is needed for Th�uringen itself, thus two colors are left for its
neighbors which obviously does not su�ce as the ring contains an odd number of them.
Figure 4.2 shows the constraint network corresponding to the extended map-coloring
problem.

Assume that for some reasons we are not allowed to use an additional color, i.e. to
extend the domains of the variables, but on the other side are forced to come up with
at least a partial solution to the problem. Thus, we need to �nd a solution to a relaxed
version of the problem that is as close as possible to the original formulation. The term
\as close as possible" already shows that partial constraint satisfaction problems can also
be regarded as a kind of optimization problem. In the following section, we will take
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Figure 4.2: The constraint network for the extended map-coloring problem

this optimization view on constraint relaxation and will present techniques for �nding
an optimal solution to a PCSP which relaxes the problem only as much as necessary to
obtain a solution.

4.2 Constraint Relaxation Techniques

For now we de�ne a partial constraint satisfaction problem (PCSP) as a CSP where we
are willing to accept a solution that violates some of the constraints. A more formal
de�nition will be given in Section 4.3. An optimal solution in this setting is one that
satis�es as many constraints as possible. Thus, we will refer to this setting as maximal
constraint satisfaction. In Section 2.3, we have identi�ed backtracking as the classic
algorithm for solving CSPs. As we recognized maximal constraint satisfaction as an
optimization problem, our attention is drawn to branch and bound [Lawler and Wood,
1966, Reingold et al., 1977] which is a widely used optimization technique that may be
viewed as a variation on backtracking. Thus, it is a natural choice to study how to use
branch and bound for �nding optimal, speci�cally maximal, partial solutions to a PCSP.

4.2.1 Maximal constraint satisfaction

Branch and bound for maximal constraint satisfaction is the natural analogue of back-
tracking for constraint satisfaction. Backtrack search tries all value combinations ex-
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haustively if necessary, but can avoid considering some combinations by observing that a
subset of values cannot be extended to a full solution, thus pruning a subtree of the search
space. Branch and bound operates in a similar fashion to backtracking in a context where
we are seeking a maximal solution, one which satis�es as many constraints as possible.
Branch and bound basically keeps track of the best solution found so far and abandons a
line of search when it becomes clear that it cannot lead to a better solution. A version of
backtracking that searches for all solutions rather than the �rst solution, most naturally
compares with the branch and bound extension to �nd a maximal solution.

The branching in the search tree corresponds to variable values, e.g. the choice of
red for HH. The nodes in the search tree represent labels, i.e. assignments of values to
variables during the search. The search path leading down to the most recently chosen
label is the current search path. It holds as a compound label the current set of choices of
values for variables. Thus, it represents a proposed incomplete solution, unless it includes
values for all the variables.

Search concludes when we �nd a perfect solution, which is of course not available in
overconstrained problems like the extended map-coloring problem, or run out of things
to try. We could also quit when we reach a preset su�cient bound "0, which speci�es that
we will be satis�ed if we �nd a partial solution that violates no more than "0 constraints.
We may know, for example, that no perfect solution to the map-coloring problem is
possible and thus be able to set "0 to 1. We may be willing to settle for a \close enough"
or su�cient solution. Obviously the larger we set "0 the easier the problem is likely to
be.

Circumstances may also impose resource bounds. In particular, real time processing
may require immediate answers that can be re�ned later if time allows. The branch and
bound process is well suited to providing resource-bounded solutions. We can simply
report the best solution available, when, for example, a time bound is exceeded. The
branch and bound process is also clearly well-suited to support an any-time algorithm,
which can repeatedly provide a \best-so-far" answer when queried. It can quickly provide
some answer with a better one perhaps to follow as time allows.

A branch-and-bound algorithm for �nding a maximal solution to a PCSP

The function FindMaximalSolution shown in Figure 4.3 performs a branch and
bound search for �nding the maximal solution to a PCSP. It takes �ve arguments: P
represents the current search path, " measures the number of constraints violated by the
labels in P. X is the variable to be assigned at the current node in the search tree, V is
the set of variables that remain to be labeled (including X), and �X is the (remaining)
set of values that can be tried for X.

The variables Pmin, "min, and "0 are global to the function FindMaximalSolution,
all other variables are local. The variable Pmin represents the best solution found so far;
"min is used during the search to store the number of inconsistencies in the best solution
found up to that point in the search. "min is the necessary bound in the sense that to
do better it is necessary to �nd a solution with fewer inconsistencies. The necessary
bound "min can be set initially based on a priori knowledge that a solution is available
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function FindMaximalSolution(P, " , X, V, �X):
if V= ; then /* P holds a compound label assigning values to all variables */
Pmin  P
"min "
if "min� "0 then return true else return false endif

else if �X= ; then /* all values in DX have been tried for extending P */

return false
endif

else /* try to extend P using another value v 2 �X */

select a value v 2 �X

"̂  " /* check whether we can do better when committing to hX  vi */
CX  fc 2 C j X 2 vars(c) ^ vars(c) � vars( P [ fhX  vig)g
while CX 6= ; and "̂ < "min do

select and delete a constraint ĉ from CX

if :satis�es(P [ fhX  vig, ĉ) then "̂  "̂ + 1 endif
endwhile
select a variable X̂ 2 V� fXg unless V� fXg = ;
if "̂ < "min and FindMaximalSolution(P [ fhX  vig, "̂ , X̂, V� fXg, DX̂)
then

return true
else

return FindMaximalSolution(P, " , X, V, �X� fvg)
endif

endif

Figure 4.3: Function FindMaximalSolution

that violates fewer than "min constraints, or on an a priori requirement that we are not
interested in any solutions that violate more than "min � 1 constraints. As branch and
bound proceeds, if a solution is found that violates "̂ < "min constraints, "min is replaced
by "̂ .

In this algorithm as in all retrospective procedures, a value v 2 �X being considered
for inclusion in the solution P is compared with values already chosen, to determine
whether constraints between the instantiated variables vars(P [ fhX  vig) and the
current oneX are satis�ed. Each such test is a constraint check. Since the total number of
constraint checks is a standard measure of CSP algorithm e�ciency, we wish to minimize
this quantity. To this end, the new distance "̂ is compared with the bound "min after
each constraint check, so that if the bound is reached, the current value v is not checked
further. Note that, due to our procedure for minimizing constraint checks, some checks
are avoided at many points of the search tree, including at some of the lowest-level nodes.
In some cases subtrees are pruned; in some cases a value does not need to be checked
against the entire preceding search path.

The general worst-case bound for this algorithm is of course exponential. However, it
is no worse than that for a backtracking algorithm for �nding a perfect solution. Both,
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in the worst case, will end up trying all possible combinations of values, and testing all
the constraints among them. On the other hand, the exponential worst-case bound is
bad enough. Therefore, we will in the following consider techniques that may help to
avoid achieving this bound.

Finding the maximal solution to the extended map-coloring problem

The function FindMaximalSolution can be easily applied to the extended map-
coloring problem where the necessary bound "min is set to 1 as we do not know about
any partial solution so far, and the su�cient bound "0 can be set to 1 as we already know
that no perfect solution exists. Calling the function FindMaximalSolution on

� the empty compound label ; as the current search path P,

� its distance from a perfect solution being " = 0 (the empty search path does not
violate any constraints),

� some arbitrarily chosen start variable X 2 V , say SH,

� the set of remaining variables V= V ,

� and the domain �X= DX = fred, green, blueg

will return `true' which means that a maximal solution with distance 1 has been found,
i.e. which violates only one constraint. The corresponding map-coloring is shown in
Figure 4.4.
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Figure 4.4: A maximal solution to the extended map-coloring problem
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Although the solution shown in Figure 4.4 is optimal in the sense that it violates the
smallest number of constraints, it appears that it may not be the best solution for the
purpose of map-coloring: The idea behind the constraint that neighbored states should be
colored di�erently is that the area of di�erent states can easily be recognized when having
a look at the colored map. The solution in Figure 4.4 violates only one constraint, namely
the constraint which requires Niedersachsen and Sachsen-Anhalt to take di�erent colors.
However, the reader may agree that violating this constraint should be regarded much
worse than violating, for example, the constraint between Mecklenburg-Vorpommern and
Sachsen-Anhalt which share a much smaller common border. Thus, it appears that the
problem with the maximal constraint satisfaction approach as discussed so far is that
all constraints are treated equally and that the approach o�ers no means for expressing
priorities or preferences etc.

4.2.2 Optimal constraint satisfaction

The above mentioned drawback can be remedied when we allow to express with each
constraint some kind of weight expressing, for example, the importance of the constraint
being satis�ed for obtaining a useful solution.

Most classical optimization approaches in Operations Research [Budnick et al., 1977]

use real numbers as weights and perform optimization using a weighted sum as a cost
function in order to evaluate the quality of a solution and the e�ect on it when changing
value assignments.

We can easily adapt this view to the maximal constraint satisfaction approach by
specifying a weight for each constraint which expresses its importance to be satis�ed in
a partial solution. Thus, we obtain the following de�nition where we assume the set of
weights W to be the set of real numbers IR:

De�nition 25 (weighted constraint) A weighted constraint C is a constraint that
has been assigned a weight w from a given set of weights W . The expression weight(C)
denotes the weight of a constraint C.

For incorporating weighted constraints in the branch-and-bound algorithm of Fig-
ure 4.3, the only necessary change is to increase the distance "̂ of a partial solution by
the weight weight(ĉ) of a constraint ĉ if assigning the current value v to X violates the
constraint ĉ.

Finding the optimal solution to the extended map-coloring problem

The introduction of weighted constraints will now enable us to �nd an optimal solution to
the extended map-coloring problem in contrast to the maximal solution (with minimum
number of constraint violations) shown in Figure 4.4. By using the length of the com-
mon border between two states represented by the variables X and Y as the weight of
the constraint CfX;Y g on them, the function FindMaximalSolution �nds an optimal
solution which is shown in Figure 4.5.
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Figure 4.5: An optimal solution to the extended map-coloring problem

This solution is di�erent from the one in Figure 4.4 and is not maximal in the number
of constraints satis�ed. However, it seems obvious that for the purpose of easily recog-
nizing the areas of the states, the optimal solution should be preferred to the minimal
one.

From real-weighted constraints to discrete weights

In the map-coloring problem it appears that real-weighted constraints, i.e. having real
numbers as weights, are well suited for representing the importance of the constraints
which directly correlates with the length of the border between the corresponding states.
Thus, in this example, one can exactly measure the importance of a constraint and express
it as a real number. This, however, needs not to be the case in many other applications
where the importance of a constraint can in the best case be expressed qualitatively. For
example, in the lathe-tool selection application to be presented in Chapter 8 we have
economical constraints of the form

\In the roughing process, a square insert should be preferred to a triangular one."

as well as some geometrical constraints like the following:

\The sum of the angles �, �, and  has to be less or equal 180�."

Obviously, the latter has to be satis�ed in any case while the �rst can be relaxed if
necessary. However, it would be quite unnatural to assign some real number to the
constraints in order to represent their importance or strength w.r.t. relaxation. Where
should the numbers come from? What should be the di�erence between importance 5:67
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and 5:68? Instead, it seems more natural to express their strength in qualitative terms,
e.g. by using attributes like hard, strong, weak or soft for the constraints.

Moreover, when using real numbers as weights for the constraints the strictly declara-
tive nature of the CSP formulation is lost because it would then be very easy to include
control information in the problem representation which from the declarative point of
view should only contain the descriptive, logical part of the problem statement.

Therefore, as we are essentially interested in preserving the declarative aspect of the
CSP approach, we will focus on the qualitative approach which means assigning values
from a small discrete set of weights to express the importance of a constraint. This is
the approach which is also supported by the Contax system and will be presented in
the following.

4.3 Constraint Relaxation in Contax

For the above mentioned reasons, in Contax we use a small set of discrete qualitative
weights to express the importance of constraints or priorities between them. The weights
are represented symbolically as hard, strong, medium, weak, and soft where there is a
linear order `<' de�ned over them such that

soft < weak < medium < strong < hard.

Thus, the Contax user only has access to these qualitative expressions. The key point
is not that we allow for only �ve weights1 but the fact that we require weights to be
expressed qualitatively. However, using a set of ten weights as in [Descotte and Latombe,
1985] seems not to be desirable because then again the question arises what the semantic
di�erence is between two weights, say 7 and 8. O�ering too many discrete weights will
result in the same problems concerning declarativity as we have discussed in the context
of real-weighted constraints.

However, it is a completely di�erent issue how these quantitative weights are processed.
Indeed, we can simply use the branch-and-bound algorithm of Figure 4.3 to �nd the
optimal solution to a PCSP that uses qualitative weights in its problem representation;
the only thing we will need is a mapping ' from the set of qualitative weights W onto a
numerical domain over which the branch-and-bound algorithm will operate.

4.3.1 A formal de�nition of partial constraint satisfaction

Thus, we are now in a position to give a more formal de�nition of the partial constraint
satisfaction problem as follows.

De�nition 26 (partial constraint satisfaction problem) A partial constraint sat-
isfaction problem (PCSP) is a tuple (V; �; C; ') such that (V; �; C) is a �nite constraint

1In the current Contax implementation the set of weights can be de�ned by the user and can
therefore easily be extended.



78 Chapter 4: Partial Constraint Satisfaction and Constraint Relaxation

satisfaction problem, C is a set of weighted constraints using some set of weights W , and
' : W 7! IR is a mapping that assigns a positive real number to each weight in W . The
PCSP is a discrete partial constraint satisfaction problem if W is a discrete �nite set of
weights.

We can now also de�ne a solution to a PCSP as the optimal solution where optimality
is based on the weights w 2 W and their numerical correspondences given by '(w). First,
we de�ne the badness of a compound label as follows:

De�nition 27 (badness of a compound label) Let P = (V; �; C; ') be a PCSP on
the variables V = fX1; :::; Xng. The badness of a compound label L is de�ned as the sum
of the weights of all the constraints that are violated by L and is denoted by badness(L):

badness(L) =
P
f '(c) j c 2 C ^ vars(c) � vars(L) ^ :satis�es(L; c)g

Thus, the solution to a PCSP is required to be optimal in the sense of minimal badness:

De�nition 28 (solution to a PCSP) Let P = (V; �; C; ') be a PCSP on the variables
V = fX1; X2; : : : ; Xng. A solution to the PCSP P is an n-compound label L assigning
values to all variables in V such that it has minimal badness, i.e. there does not exist
any n-compound label L̂ 6= L with vars(L̂) = V and badness(L̂) < badness(L).

In Section 4.2 we have presented an algorithm that uses branch and bound for �nding
the maximal solution to a PCSP (Figure 4.3). The branch-and-bound approach to solving
PCSPs has been introduced as a natural analogue to backtracking for solving CSPs. As
a consequence, the FindMaximalSolution function su�ers from similar drawbacks
as the backtracking algorithm introduced in Section 2.3.2. The main reason is that
both approaches are limited to retrospective constraint checking, i.e. the current value
assignment is checked only for compatibility with past variables.

As a remedy for the backtracking approach, in Chapter 3 we have studied arc-
consistency and hyperarc-consistency techniques which perform a prospective constraint
checking in the sense that checking the current value assignment for compatibility with
previous ones can also a�ect the domains of future variables and thus reduces the search
space ahead. Moreover, by applying these consistency enforcing techniques once before
starting backtrack search, often results in a very e�cient search space pruning and some-
times even completely eliminates the need for backtracking search afterwards. The algo-
rithm GenerateSolutions shown in Figure 3.15 (page 61) which is used in Contax
for solving FCSPs e�ciently integrates the prospective hyperarc-consistency checking
within the generic backtracking scheme to ensure that �nally all solutions to the FCSP
will be found.

Unfortunately, for solving PCSPs we cannot make use of these consistency-enforcing
techniques, as CSP and PCSP solving are based on di�erent de�nitions of local failure
during CSP and PCSP search. A CSP search path fails as soon as a single inconsistency is
encountered. A PCSP search path will not fail until enough inconsistencies accumulate to
reach a cuto� bound. Therefore, even if arc-consistency or hyperarc-consistency checking
will recognize that some value v for some future variable X has no support in some
constraint c and thus cannot take part in any solution to a CSP, from the viewpoint of
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partial constraint satisfaction we are not allowed to remove this value v from the domain
of X because it may still be part of a solution to the PCSP which then, of course, violates
the constraint c. Thus, it seems as we cannot take advantage of the pruning power of
hyperarc-consistency when solving a PCSP. However, this is not completely true as we
will see in the following section.

4.3.2 Enforcing Hyperarc-Consistency in PCSP Solving

The negative conjecture drawn from the above observations is only true as long as all
constraints can be subject to constraint violations by a PCSP solution. However, if
there is a subset C1 � C of the constraints that cannot be violated by any solution
to the PCSP, then we can use e.g. a variant of the EnforceHyperArcConsistency
algorithm presented in Figure 3.14 (page 58) to enforce hyperarc-consistency among the
constraints in C1.

The constraint class C1 can be identi�ed as those problem constraints that have to
be satis�ed in any case, therefore these constraints are regarded as hard constraints. In
Contax this class is identical to the set of constraints that are weighted hard. From the
operational point of view, the weight of all hard constraints is de�ned as1 such that no
hard constraint can be violated by any solution to the PCSP.

Figure 4.6 shows the EnforceHyperArcConsistencyOnHardConstraints
function that establishes hyperarc-consistency among the hard constraints. It takes an ar-
gument Q which initializes the queue of constraint-variable pairs that have to be checked.

function EnforceHyperArcConsistencyOnHardConstraints(Q):
Queue  Q
Consistent  true
while Queue not empty and Consistent do

select and delete some pair (c;X) from Queue
if DirectedHyperRevise(c;X) then

Queue  Queue [ f(ĉ; Xk) j ĉ 2 C;weight(ĉ) =1; fX;Xkg � vars(ĉ); X 6= Xkg
if DX = ; then Consistent  false endif

endif
endwhile
return Consistent

Figure 4.6: Function EnforceHyperArcConsistencyOnHardConstraints

The function EnforceHyperArcConsistencyOnHardConstraints can be in-
tegrated in a variant of the FindMaximalSolution function shown in Figure 4.3
(page 73) that performs the branch-and-bound search for the solution to a PCSP. The
resulting function FindOptimalSolution is shown in Figure 4.7.

Besides adding the weight weight(ĉ) of a violated constraint ĉ to the new distance "
instead of simply incrementing " with each constraint violation, it mainly di�ers from
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function FindOptimalSolution(P, " , X, V, �X):
if V= ; then /* P holds a compound label assigning values to all variables */
Pmin  P
"min "
if "min� "0 then return true else return false endif

else if �X= ; then /* all values in DX have been tried for extending P */

return false
endif

else /* try to extend P using another value v 2 �X */

select a value v 2 �X

DX  fvg
"̂  " /* check whether we can do better when committing to hX  vi */
CX  fc 2 C j X 2 vars(c) ^ vars(c) � vars(P [ fhX  vig)g
while CX 6= ; and "̂ < "min do

select and delete a constraint ĉ from CX

if :satis�es(P [ fhX  vig, ĉ) then "̂  "̂ + '(weight(ĉ)) endif
endwhile
select a variable X̂ 2 V� fXg unless V� fXg = ;
Q̂  f(c;Xk) j c 2 C;weight(c) =1; fX;Xkg � vars(c); X 6= Xkg
push fDXi

j Xi 2 V g on stack S
if "̂ < "min

and EnforceHyperArcConsistencyOnHardConstraints(Q̂)
and FindOptimalSolution(P [ fhX  vig, "̂ , X̂, V� fXg, DX̂)
then

return true
else

restore fDXi
j Xi 2 V g from stack S and pop S

return FindOptimalSolution(P, " , X, V, �X� fvg)
endif

endif

Figure 4.7: Function FindOptimalSolution

the FindMaximalSolution function in integrating the hyperarc-consistency checking
as another condition for committing to a new value assignment hX  vi. The argument
to EnforceHyperArcConsistencyOnHardConstraints is the set Q̂ of all hard-
constraint-variable pairs that have to be checked when extending the search path P by
hX  vi.

Establishing hyperarc-consistency on the hard constraints may now also result in some
values being removed from some variables domain. On the one hand side this is exactly
the prospective checking that we wanted to include in the branch-and-bound framework.
But as the embedded call to FindOptimalSolution may fail to extend the current
search path including hX  vi to an optimal solution, the e�ect of enforcing hyperarc-
consistency due to committing to the assignment hX  vi has to be undone on the way
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back. Thus, we have to include a stack S that holds sets of all variable domains for each
recursive call to FindOptimalSolution on an extended search path.

In Section 3.2.3, we have presented the �nal algorithm GenerateSolutions (Fig-
ure 3.15 on page 61) for �nding the solutions to an FCSP by using hyperarc-consistency
for preprocessing and pruning the search space before starting an interleaved combina-
tion of backtracking and hyperarc-consistency constraint propagation to ultimately �nd
or generate all solutions. The direct analogue can also be built for solving a PCSP as
shown in Figure 4.8. Of course, in the case of PCSPs the initial hyperarc-consistency step
for preprocessing is restricted to checking hard constraints only. But nevertheless, as we
can assume a substantial body of constraints in all real-life applications to be �xed and
hence not relaxable, i.e. hard constraints, a considerable pruning of the search space can
be expected by preprocessing the hard constraints and enforcing hyperarc-consistency
among them.

algorithm GenerateBestSolution:

Init: "0  0
"min  1
Pmin  ;

Prune: Q  f(c;X) j c 2 C, weight(c) =1, X 2 vars(c)g
if EnforceHyperArcConsistencyOnHardConstraints(Q) then

goto Search
else /* hard constraints violated */

return false
endif

Search: select a variable X 2 V
if FindOptimalSolution(;, 1, X, V , DX) then

return Pmin /* all constraints satis�ed */

else if "min = 1 then
return false /* hard constraints cannot be satis�ed */

else
return Pmin /* solution to minimally relaxed problem */

endif

Figure 4.8: Algorithm GenerateBestSolution

Thus, what GenerateSolutions is for FCSPs, GenerateBestSolution is for
PCSPs. Also note with the names for the algorithms thatGenerateSolutions reports
all (perfect) solutions to an FCSP while GenerateBestSolution will return only
one solution: the best (imperfect) one. In the following section, we will show that
GenerateBestSolution will always terminate and �nd the best solution to the PCSP.

4.3.3 Termination of the GenerateBestSolution algorithm

The GenerateBestSolution algorithm basically builds on calling the two functions
EnforceHyperArcConsistencyOnHardConstraints and FindOptimalSolu-
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tion. Thus, we basically have to prove the termination of these functions to obtain a
termination result for the GenerateBestSolution algorithm.

Lemma 3 (termination EnforceHyperArcConsistencyOnHardConstraints)
The function EnforceHyperArcConsistencyOnHardConstraints always termi-
nates.

Proof. As the function EnforceHyperArcConsistencyOnHardConstraints is
a variant of the EnforceHyperArcConsistency algorithm in Figure 3.14 restricted
to checking hard constraints, it is clear that it will always terminate due to proposition 4
on page 59. 2

Proposition 6 (termination of FindOptimalSolution) The function FindOpti-
malSolution always terminates.

Proof. The while loop for estimating the new distance "̂ when committing to the assign-
ment hX  vi trivially terminates because with each loop a constraint ĉ is deleted from
the set CX and CX = ; will terminate the while loop. Also, the call to EnforceHy-
perArcConsistencyOnHardConstraints will cause no termination problems due
to lemma 3. Thus, it remains to prove that the recursive calls to FindOptimalSolu-
tion will always terminate. Therefore, we de�ne the size of the parameters in a call to
the function FindOptimalSolution(P, " , X, V, �X) as

 (P, " , X, V, �X) = (jVj � d) + j�X j

where d denotes the maximum cardinality of the domains DXi
for all variables Xi 2 V .

Obviously,  (P, " , X, V, �X) � 0 for all calls to FindOptimalSolution. We can now
show that the size of the parameters passed to the function FindOptimalSolution
decreases strong monotonically with each recursive call. Let � be the cardinality of V
and � be the cardinality of �X in the call to FindOptimalSolution. If � = 0 or � = 0
then FindOptimalSolution will terminate immediately; so we can assume � > 0 and
� > 0 when studying the recursive calls to FindOptimalSolution. As there are two
of them in the de�nition of FindOptimalSolution we have to distinguish two cases.

Case 1: Consider the call FindOptimalSolution(P[fhX  vig,"̂ ,X̂,V�fXg,DX̂).

The size  (P[fhX  vig, "̂ ,X̂,V�fXg,DX̂) of the parameters in the call is given as
(jV�fXgj � d) + jDX̂ j = (� � 1) � d+ jDX̂ j � � � d < � � d + � and hence the size of the
call is decreasing.

Case 2: Consider the second call FindOptimalSolution(P," ,X,V,�X�fvg). The
size of its parameters  (P, " ,X,V,�X�fvg) is � � d + j�X�fvgj = � � d + (� � 1) <
� � d+ � and hence again the size of the call is decreasing.

Therefore, only a �nite number of recursive calls to FindOptimalSolution can take
place and thus the function FindOptimalSolution will always terminate. 2

From lemma 3 and proposition 6 we can then derive the termination of the Gener-
ateBestSolution algorithm.

It can also be easily proved that the GenerateBestSolution algorithm always
�nds the optimal solution w.r.t. the weights assigned to the constraints. The key obser-
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vation is that weights are mapped to positive numbers and that the function FindOp-
timalSolution closes a search path and prunes the corresponding search tree if and
only if it cannot lead to a solution with a smaller weight than that of the best solution
so far. However, this result requires the necessary bound "min to be set to 1 and the
su�cient bound "0 to be set to 0 when starting search. Otherwise, optimality cannot be
guaranteed in general. But, as the GenerateBestSolution algorithm initializes "min

and "0 with 1 and 0 respectively, FindOptimalSolution �nds the optimal solution
to the PCSP.

4.3.4 Weighted constraints and weighted value combinations

All discussions so far assumed that weights are assigned to entire constraints in a PCSP.
However, in some applications it is useful to be able to express preferences on the level
of compound labels that constitute the de�nition of a constraint. Therefore, Con-
tax supports weighted constraints as well as weighted value combinations, i.e. assigning
weights to individual compound labels within a constraint de�nition. As these weights
express preferences on the level of value combinations, they are referred to as combination
weights.

De�nition 29 (weighted value combination) Let L be a compound label and ! be
a weight from a given set 
 of combination weights. Then the pair (L; !) is a weighted
value combination and ! is the weight of (L; !), denoted by weight((L; !)) = !.

Note that the set W of weights used for entire constraints is di�erent from the set

 of combination weights used for value combinations. A small weight (from the set
W ) assigned to a constraint C expresses a low importance of satisfying the constraint
C. In contrast to that, a small combination weight (from the set 
) assigned to a
compound label L 2 C means to prefer this particular value combination to others with
a higher weight when trying to satisfy the constraint C. Thus, the notion of weighted
value combinations allows to represent sets of additional compound labels in a constraint
de�nition that can be added to the set of legal value combinations and taken into account
if necessary. It hence o�ers an elegant way to specify possible relaxations of a constraint
together with its de�nition. Such a constraint containing weighted value combinations
is called a �ne-weighted constraint and is de�ned as follows:

De�nition 30 (�ne-weighted constraint) A �ne-weighted constraint C over a set of
variables V = fX1; : : : ; Xng is a set of weighted value combinations (L; !) where L is an
n-compound label with vars(L) = V .

As the GenerateBestSolution algorithm deals with weighted constraints only,
�ne-weighted constraints have to be transformed into weighted constraints. The basic
idea of this transformation is to create weighted constraints of increasing importance (i.e.,
weights) by successively including compound labels of increasing preference (i.e., combi-
nation weights). Thus, �rst a weighted constraint with minimal weight (soft) will be
created containing only the compound labels of those weighted value combinations in the
�ne-weighted constraint that have minimal combination weights. Then, with each step
more and more compound labels are selected from the �ne-weighted constraint making up
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weighted constraints of increasing weights until �nally a constraint with maximum weight
(hard) is created containing all value combinations occurring in the �ne-weighted con-
straint. Assume a discrete �nite set of weights W = fw1; : : : ; wmg with '(wi) < '(wj)
for all i < j and a discrete �nite set of combination weights2 
 = f!1; : : : ; !mg such
that '(!i) = '(wi) for all 1 < i < m. Then each �ne-weighted constraint C can be
transformed into m weighted constraints Cwi

as follows.

The constraint Cwi
contains all compound labels L that occur in C and have a combi-

nation weight less or equal to wi:

Cwi
= fL j (L; !j) 2 C ^ '(!j) � '(wi)g

Each of the m weighted constraints Cwi
is assigned the weight wi.

Contax uses the set of constraint weights W = fsoft, weak, medium, strong, hardg
with '(soft) < '(weak) < '(medium) < '(strong) < '(hard). For assigning weights
or preferences to value combinations, Contax provides the following set of combination
weights 
 = fprefer, relax1, relax2, relax3, relax4g. Thus, transforming a �ne-
weighted constraint C to a set of weighted constraints results in all preferred value
combinations in C being allowed by a new hard constraint. All value combinations
in C weighted prefer or relax1 are covered by a strong constraint, all combinations
weighted prefer, relax1, or relax2 form a medium weighted constraint, and so on.
Finally, all value combinations in C, no matter what their weights are, constitute the
body of a new soft constraint.

Having transformed all �ne-weighted constraints into weighted ones then allows using
the GenerateBestSolution algorithm to �nd an optimal solution to the PCSP.

However, the real weights that Contax actually assigns to the generated constraints
di�er from the real weights that it assigns for other weighted constraints. The reason is
that the generated constraints Cwi

are overlapping, i.e. Cw1 � Cw2 � � � � � Cwm. Hence,
violating the generated constraint Cwi

also violates the corresponding constraints Cwj

with j < i. For the branch-and-bound search process in the FindOptimalSolution
this puts a disadvantage on those constraints that have been generated as the result
of incorporating �ne-weighted constraints. Therefore, the real weight assigned to these
constraints Cwi

is computed as

'wi
= '(wi)�

P
j<i

'(wj)

such that violating a constraint Cwi
after having violated a constraint Cwj

, j < i, earlier
in the search path will have the same result as if Cwi

were an ordinary constraint which
is now violated.

2We assume equal cardinality of W and 
 as it helps de�ning the transformation of �ne-weighted
constraints into weighted constraints. However, the transformation can also be de�ned dealing with
di�erent numbers of weights.
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4.3.5 A user's view on weighted constraints in Contax

Besides the functionality discussed in Section 3.2.4, the current implementation of the
Contax system also contains a solver for PCSPs that is based on the GenerateBest-
Solution algorithm presented in Figure 4.8 on page 81. As mentioned earlier, Contax
restricts the weights to be symbols that are mapped to numerical values internally. Al-
though from the viewpoint of declarativity a small number of weights should be preferred,
it is open to the user to include new (symbolic) weights as necessary. In the standard
version, Contax o�ers a set of �ve weights ranging from hard to soft. These weights
have been su�cient even for the applications that will be studied in Chapter 8.

The assignment of weights to constraints could in principle take place at two di�erent
steps when representing a PCSP in Contax. In principle, whenever de�ning a new con-
straint, e.g. by def-primitive-constraint, a weight could be assigned to the constraint.
However, as di�erent instances of one constraint may be of di�erent importance for the
solution to the problem, in Contax weights are assigned not to constraint de�nitions
but to constraint instances. Thus the only (visible) extension is that make-constraint
accepts another keyword parameter holding the weight of the constraint instance. The
different-colors constraint between the variables HH and SH can thus be declared as
a hard constraint by the following:

(make-constraint :name C1

:type different-colors

:weight hard

:color1 HH

:color2 SH)

For primitive constraints, Contax also allows to assign weights to value combinations.
Thus, the constraint type different-colors (cf. Figure 3.17 on page 65) can now also be
de�ned in a way that it expresses a strong preference for di�erent colors but also allows for
equal colors as an ultimate relaxation, hence the name preferably-different-colors:

(def-weighted-constraint preferably-different-colors

:interface (color1 color2)

:domains (colors colors)

:prefer ((red green) (red blue)

(green red) (green blue)

(blue red) (blue green))

:relax4 ((green green)

(blue blue)

(red red)))

When creating an instance of a �ne-weighted constraint, Contax automatically per-
forms the above mentioned transformation and installs a set of constraint instances,
one for each constraint weight. For the above example two constraints are generated:
one with weight (nearly3) hard containing all 9 value combinations and another soft

3The exact weight results as '(hard)�'(strong)�'(medium)�'(weak)�'(soft).
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constraint containing only the �rst 6 value combinations. Thus, creating an instance
C1 of the �ne-weighted constraint preferably-different-colors linked to the vari-
ables HH and SH would be (nearly) equivalent to de�ning two intermediate constraints
preferably-different-colors-1

(def-primitive-constraint preferably-different-colors-1

:interface (color1 color2)

:domains (colors colors)

:tuples ((red green) (red blue)

(green red) (green blue)

(blue red) (blue green)))

and preferably-different-colors-2

(def-primitive-constraint preferably-different-colors-2

:interface (color1 color2)

:domains (colors colors)

:tuples ((red green) (red blue)

(green red) (green blue)

(blue red) (blue green)

(green green)

(blue blue)

(red red)))

before creating one instance of each of these constraints:

(make-constraint :name C1-1

:type preferably-different-colors-1

:weight soft

:color1 HH

:color2 SH)

(make-constraint :name C1-2

:type preferably-different-colors-2

:weight hard

:color1 HH

:color2 SH)

Solving the extended German-map coloring problem with Contax

Using weighted constraints, we are now also able to represent and solve the extended map-
coloring problem. The Contax representation for this PCSP is very similar to that of
the German-map coloring problem in Figure 3.17 on page 65. The main di�erence besides
the increased number of variables is the assignment of weights to the various instances
of the different-colors constraints. In our representation, the weight assigned to a
constraint instance qualitatively correlates to the length of the corresponding border.
Thus, the constraint between the variables MV and SA is the only one weighted soft
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as the corresponding border between Mecklenburg-Vorpommern and Sachsen-Anhalt is
by far the shortest in the map. Figure 4.9 shows the Contax representation for the
extended map-coloring problem.

(def-domain colors (red green blue))

(def-primitive-constraint different-colors

:interface (c1 c2)

:domains (colors colors)

:tuples ((red green) (red blue) (green red)

(green blue) (blue red) (blue green)))

(make-variable :name SH :domain colors)

... 14 more variables ...

(make-variable :name SN :domain colors)

(make-constraint :name different-colors :c1 SH :c2 HH :weight medium)

(make-constraint :name different-colors :c1 SH :c2 NS :weight medium)

(make-constraint :name different-colors :c1 HH :c2 NS :weight medium)

(make-constraint :name different-colors :c1 NS :c2 HB :weight medium)

(make-constraint :name different-colors :c1 NS :c2 NW :weight hard)

(make-constraint :name different-colors :c1 NS :c2 HS :weight medium)

(make-constraint :name different-colors :c1 NW :c2 HS :weight strong)

(make-constraint :name different-colors :c1 NW :c2 RP :weight strong)

(make-constraint :name different-colors :c1 HS :c2 RP :weight strong)

(make-constraint :name different-colors :c1 HS :c2 BW :weight medium)

(make-constraint :name different-colors :c1 HS :c2 BY :weight strong)

(make-constraint :name different-colors :c1 RP :c2 SL :weight medium)

(make-constraint :name different-colors :c1 RP :c2 BW :weight medium)

(make-constraint :name different-colors :c1 BW :c2 BY :weight hard)

(make-constraint :name different-colors :c1 SH :c2 MV :weight medium)

(make-constraint :name different-colors :c1 NS :c2 MV :weight medium)

(make-constraint :name different-colors :c1 NS :c2 SA :weight strong)

(make-constraint :name different-colors :c1 MV :c2 SA :weight soft)

(make-constraint :name different-colors :c1 NS :c2 TH :weight medium)

(make-constraint :name different-colors :c1 HS :c2 TH :weight medium)

(make-constraint :name different-colors :c1 BY :c2 TH :weight strong)

(make-constraint :name different-colors :c1 MV :c2 BB :weight strong)

(make-constraint :name different-colors :c1 SA :c2 BB :weight strong)

(make-constraint :name different-colors :c1 BB :c2 BL :weight medium)

(make-constraint :name different-colors :c1 SA :c2 SN :weight medium)

(make-constraint :name different-colors :c1 BB :c2 SN :weight strong)

(make-constraint :name different-colors :c1 SA :c2 TH :weight strong)

(make-constraint :name different-colors :c1 TH :c2 SN :weight medium)

(make-constraint :name different-colors :c1 BY :c2 SN :weight weak)

Figure 4.9: Representing the extended German-map coloring problem in Contax
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If we now run theGenerateBestSolution algorithm on the extended German-map
coloring problem, we obtain the optimal solution which corresponds to the map-coloring
shown in Figure 4.5 on page 76.

(bestsolve :all)

=) ((SH HH NS HB NW HS RP SL BW BY MV BB BL SA TH SN)

(red green blue green red green blue red

red blue green red green green red blue))

Figure 4.10: Solving the extended German-map coloring problem with Contax

Note that the Contax system o�ers di�erent interfaces to the GenerateBestSo-
lution algorithm for solving a PCSP (function bestsolve) and for the Generate-
Solutions algorithm intended for solving an FCSP (function solve). The reason is
that even if the given CSP contains weighted constraints, it needs not necessarily be
solved using the GenerateBestSolution algorithm but can also be dealt with us-
ing the `standard' GenerateSolutions algorithm. In this case the weights are used
to incrementally strengthen the CSP as long as it remains solvable. This incremental
strengthening approach will be discussed in the following section.

4.4 Incremental strengthening of a discrete PCSP

The GenerateBestSolution algorithm can be seen as performing a constraint re-
laxation approach where the best solution is de�ned as requiring the smallest amount
of relaxation of the given constraints. In this section, we will study another approach
which works the opposite way: instead of relaxing a constraint, i.e. violating the con-
straint in a partial solution, the problem gets incrementally strengthened until no more
(sets of) constraints can be satis�ed. The main advantage of this approach is that we
can make use of the pruning power and e�ciency of CSP solving techniques as realized
in the GenerateSolutions algorithm (Figure 3.15 on page 61). Of course, in contrast
to the GenerateBestSolution algorithm that is based on branch and bound, using
incremental strengthening we cannot guarantee �nding the optimal solution to a PCSP.

The basic idea of incremental strengthening is to separate the constraints into pairwise
disjoint sets according to their weights. As constraints that are not explicitly weighted
are regarded as hard constraints, we obtain as many constraint sets as there are weights
supported by the system. So, in the standard version of Contax, we obtain �ve con-
straint sets, Chard, Cstrong, Cmedium, Cweak, and Csoft where

Cw = fc 2 C j weight(c) = wg

Note that the weights of constraints which are generated by the transformation of �ne-
weighted constraints as described in Section 4.3.4 need not be modi�ed as for use with the
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GenerateBestSolutions algorithm. Moreover, no mapping ' from symbolic weights
to numbers is required at all.

Having built such constraint sets, the principle of the IncrementalStrengthen-
ing algorithm is very simple and will only be outlined here: The system starts with
the core CSP that contains as its set of constraints the set Chard. If the Generate-
Solutions algorithms succeeds, the set of solutions is stored in a variable, say S; if
it fails, then the given CSP is unsolvable and the algorithm stops. Otherwise it incre-
mentally adds the constraints from the sets Cstrong, Cmedium, Cweak, and �nally Csoft to the
CSP which thereby gets incrementally strengthened. After each such strengthening step,
the algorithm GenerateSolutions is called again. If it succeeds, S is substituted by
the new set of solutions and strengthening can proceed as long as there are constraint
sets (corresponding to decreasing weights) to be added; otherwise the maximal solvable
strengthening of the CSP has been reached in the last step and the value of S will be
returned as the `solution' to the CSP.

As constraint sets are added to the CSP as a whole, this approach runs a high risk of
returning solutions that are far from being optimal: If at some level all but one from a
large number of constraints with the same weight can be satis�ed, the `solution' that will
be returned by the algorithm (if any) will not necessarily satisfy most of these constraints.
Even if all solutions are computed and stored at each level, a lot of `solutions' will be
returned that may violate many of the constraints mentioned.

Therefore, the IncrementalStrengthening algorithm o�ers only a very rough re-
laxation behavior. However, it can be implemented very e�ciently and proved to be
su�cient for a class of applications where only the optimal level of satis�able constraint
sets is required in contrast to an optimal solution that can be provided by the Gener-
ateBestSolution algorithm|at higher costs, of course.

4.5 Discussion and Related Work

The utility of some form of partial constraint satisfaction has been repeatedly recog-
nized. A variety of applications has motivated a variety of approaches. Conicting
constraints have arisen in a variety of domains. Descotte and Latombe made \compro-
mises" among antagonist constraints in a planner for machining problems [Descotte and
Latombe, 1985]. Borning used constraint \hierarchies" to deal with situations in which
a set of requirements and preferences for the graphical display of a physical simulation
cannot all be satis�ed [Borning et al., 1987]; these hierarchies have been embedded in a
constraint logic programming language [Borning et al., 1989].

Scheduling problems are a natural source of constraint satisfaction problems, and
schedule conicts a natural source of PCSPs. Fox added the concepts of constraint
relaxation as the selection of constraint alternatives, \preferences" among relaxations and
constraint \importance" to constraint representations to cope with conicting constraints
in job-shop scheduling [Fox, 1987]. Feldman and Golumbic used \priorities" in looking
for optimal student schedules [Feldman and Golumbic, 1990].

Machine vision has also strong relations to work on partial constraint satisfaction.
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Shapiro and Haralick treated inexact matching of structural descriptions using an exten-
sion of constraint satisfaction that they called the inexact consistent labeling problem,
which sought a solution within a given error bound [Shapiro and Haralick, 1981]. Mohr
and Masini suggested a modi�cation of local consistency processing to deal with errors,
permitting values to fail to satisfy some constraints, in order to cope with noise in do-
mains such as computer vision [Mohr and Masini, 1988].

The concept of weighted value combinations is motivated by machine vision as well
[Rosenfeld et al., 1976]. The expression of preferences in database queries is also a re-
lated problem [Lacroix and Lavency, 1987]. Also note that the concept of optimization
can play a role in constraint satisfaction even when all constraints are satis�ed; there
may be an additional criterion to optimize among alternative solutions [Dechter et al.,
1990]. Recently, Mantha and co-workers also started investigating the problem of con-
straint relaxation and optimization within the framework of Horn clause programs using
preference logics [Brown et al., 1993].

This shows that partial constraint satisfaction and constraint relaxation have already
been recognized as an important issue in CSP research for a long time. However, most
approaches deal with this issue from a pragmatic point of view and develop techniques
to solve PCSPs specialized to certain application problems. In contrast to them, the
research presented here provides a general framework for solving PCSPs that on the one
hand side preserves the declarative representation of a CSP or PCSP respectively and
on the other hand allows for an e�cient problem solving by incorporating consistency
enforcing techniques like hyperarc-consistency within the optimization process.



5

Constraint Satisfaction over Hierarchically

Structured Domains

The basic constraint satisfaction approach as discussed in Chapter 3 as well as the ex-
tension towards constraint relaxation presented in Chapter 4 assume that the domains
are supplied extensionally as unstructured sets, listing the �nite number of members.
However, for many real world problems the domain elements often cluster into sets with
common properties and relations. Those sets, in turn, group to form higher level sets.
This clustering or categorization into \natural kinds" [Havens and Mackworth, 1983] can
be represented as a specialization/generalization hierarchy.

The main topic of this chapter is the exploitation of the structure provided when the
domains can be naturally represented as specialization hierarchies. In Section 5.1, we
will �rst introduce hierarchically structured domains and how they can be represented
declaratively. Section 5.2 will then present an extended notion to hyperarc-consistency
that will also respect the hierarchical structure of the domains. The resulting algorithm
for enforcing hierarchical hyperarc-consistency that is presented in Section 5.3 allows to
e�ciently deal with hierarchically structured domains. Hence, the extension of Con-
tax towards dealing with hierarchically structured domains that will be presented in
Section 5.4 ideally contributes to both of our goals: increasing the declarative represen-
tation capabilities as well as the problem-solving e�ciency.

5.1 Hierarchically Structured Domains

In order to exploit the structure of a domain, it can be interpreted as a domain graph
with each node corresponding to a set of elements and each arc representing the subset
relation between sets. Domain graphs are, of course, quite distinct from the constraint
graphs introduced earlier.

In general, a domain graph is not a strict tree since a set may be a direct subset of more
than one superset; the general characterization is a directed acyclic graph representing
the lattice induced by the partial ordering of the subset relation. For the purposes of
this chapter we shall assume that the domain hierarchies are singly rooted strict trees.
Each subset has only one direct superset and the subsets of a set are mutually exclusive
and exhaustive.
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For the illustration of our approach, we will again use a variant of the German-
map coloring problem; its de�nition is now extended towards hierarchically structured
domains as follows:

Problem 3 (hierarchically extended German-map coloring problem) The hi-
erarchically extended German-map coloring problem also is to decide how to color the
political map of Germany as shown in Figure 4.1 (page 70) such that neighbored states
are colored di�erently. However, as the extended map-coloring problem previously de�ned
in Chapter 3 using only three di�erent colors (red, blue, and green) has been shown to
be unsolvable, we now introduce bright and dark variants of the colors blue and green.
For red we make no di�erence, that is, we regard red as a bright color. We still require
neighbored states to be assigned di�erent colors but for the states that share only a small
border (Mecklenburg-Vorpommern and Sachsen-Anhalt, Bayern and Sachsen as well as
Hessen and Baden-W�urttemberg) we are willing to allow the same color to be used but
with di�erent brightness, e.g. to use dark blue for Mecklenburg-Vorpommern and bright
blue for Sachsen-Anhalt. Additionally, the smallest states Berlin, Hamburg, Bremen, and
Saarland shall be assigned exactly the same color; Hessen should take some green color,
and �nally, no neighbored states are allowed to be both assigned a dark color.

The domain of individual colors in the hierarchically extended map-coloring problem
is the set D = fred, bright green, dark green, bright blue, dark blueg. This `at' color
domain can now be structured as shown in Figure 5.1.

AAA
AAA

AAA
AAA

AA
AA

AAA
AAA

dark greenbright green red dark bluebright blue

colors

bright dark

Figure 5.1: Hierarchical structure of the color domain

The aim of exploiting the structure of the domains is to make the DirectedHy-
perRevise procedure used by the EnforceHyperArcConsistency algorithm (Fig-
ures 3.13 and 3.14) considerably more e�cient by reducing the number of predicate eval-
uations (constraint checks) it must perform. The currently active elements of a domain
can be represented by a set of tree nodes that dominate those members. DirectedHy-
perRevise can then retain, eliminate, or further examine entire subsets of the domain
with only one or two predicate evaluations.
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To achieve this aim, two new families of predicates will be introduced. These new pred-
icates apply not to combinations of individual domain elements for the related variables
but to combinations of subsets of the domains of the variables. These new predicates are
easily computed from the compound labels supplied with the CSP relating individual do-
main elements. The expectation is that the domains are structured so that the elements
of a subset frequently share consistency properties that permit them to be retained or
eliminated as a unit.

We shall use DX to represent the original domain for variable X and �X to represent
the active subset of DX at any point of the constraint propagation process. �X may
be implemented as a set of the active subdomains of DX . The subdomains of DX are
fD i1i2:::ik

X g which can be arranged as a tree as shown in Figure 5.2, where an arc indicates
that the subdomain at the bottom of the arc is a direct subset of the subdomain at the
top of the arc.1 The notation for D i1i2:::ik

X indicates that the subdomain is on the kth

level of the domain tree for DX and it is the ikth subdomain of its superset D
i1i2:::ik�1
X at

level k � 1 which is the ik�1th subdomain of its superset, and so on.
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Figure 5.2: The domain tree for the color domain

The set D i1i2:::ik
X is partitioned into a number of b i1i2:::ikX mutually exclusive subsets. In

other words, the following two conditions hold on all subdomains D i1i2:::ik
X � DX :

D i1i2:::ik
X =

[
1�j�b

i1i2:::ik
X

D i1i2:::ikj
X

D i1i2:::ikj1
X \D i1i2:::ikj2

X = ; 81 � j1 < j2�b
i1i2:::ik
X

1We shall from now on use the following abbreviations for the colors: r, b, and g for red, blue, and
green as before, and additionally bg for bright green bb for bright blue, dg for dark green, and db for dark
blue.
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The number b i1i2:::ikX denotes the branching rate at the node D i1i2:::ik
X in the domain tree

for variable X, i.e. it denotes into how many subdomains the domain D i1i2:::ik
X is split.

Obviously, if D i1i2:::ik
X represents a leaf in the domain tree, i.e. j D i1i2:::ik

X j = 1, then
b i1i2:::ikX = 0.

Hierarchically structured domains can be represented very declaratively by allowing
domain elements to also represent entire subdomains instead of individual values only.
That means, we can simply de�ne the color domain as the set holding the two values
bright and dark. These subdomains can then be further re�ned, e.g. the domain bright
can be de�ned as the set fbright green, red, bright blueg:

(def-domain colors (bright dark))

(def-domain bright (bg r bb))

Note, that from this viewpoint all subdomains represent sets of values; thus the leaves
representing the individual members in the domain, are handled as singleton sets.

In the algorithm we shall develop, �X , the set of still active elements of the original
DXi

, is the union of a number of mutually exclusive sets D i1i2:::ik
X . At all times, �X � DX .

Now suppose the active subset �X to be the union of some subdomains in the domain
tree:

�X =
[
�q

� �q
X

We call each � �q
X an abstract label of �X . Each abstract label � �q

X is identical to a subset
D i1i2:::ik

X � DX for some �q = i1i2: : :ik. �X will be represented by the set f� �q
Xg.

5.2 Hierarchical hyperarc-consistency

We will now show how to e�ciently implement the domain restriction step of the
DirectedHyperRevise(c,Xj) that has been presented in Figure 3.13 (page 58).

Informally, what we have to do is test each abstract label � �q
Xj

of �Xj
with respect to

a constraint c on the variables vars(c) = fX1,. . . ,Xj ,. . . ,Xmg, using a generalized version
of DirectedHyperRevise. If there are � �q1

X1
, . . . , �

�qj�1
Xj�1

, �
�qj+1
Xj+1

, . . . , � �qm
Xm

such that

every domain element in � �q
Xj

is compatible with some elements in the other domains

� �qi
Xi
, 1�i�m and i6=j, then � �q

Xj
survives unchanged in �X . If not, then check to see if

there are � �q1
X1
, . . . , �

�qj�1
Xj�1

, �
�qj+1
Xj+1

, . . . , � �qm
Xm

such that some domain element in � �q
Xj

is

compatible with some elements in the other domains � �qi
Xi
, 1�i�m and i6=j. If not, then

� �q
Xj

is simply removed from �Xj
. If there are such � �q1

X1
, . . . , �

�qj�1
Xj�1

, �
�qj+1
Xj+1

, . . . , � �qm
Xm

,

then the abstract label � �q
Xj

is replaced in �Xj
by its subdomains � �q1

Xj
up to � �qb

Xj
where

b is the branching rate b �qXj
.

When all subsets � �q
Xj

of �Xj
have been processed this way (including the new ones

generated in the course of processing) then the constraint c is hyperarc-consistent as
concerns the variable Xj. Note that for ensuring hyperarc-consistency of an entire con-
straint c it must be hyperarc-consistent concerning each variable Xj 2 vars(c), i.e. for
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each of the variables in vars(c) all values in the respective domain have to be supported
by combinations of values in the domains of the other variables of c.

We are now in a position to generalize the de�nition of hyperarc-consistency (De�ni-
tion 24 on page 55) as follows.

De�nition 31 (hierarchical hyperarc-consistency) A given k-ary constraint c with
vars(c) = fX1; : : : ; Xmg is hierarchically hyperarc-consistent if it is hierarchically
hyperarc-consistent for all variables Xj 2 vars(c). A constraint c is hierarchically
hyperarc-consistent for a variable Xj 2 vars(c) if each abstract label of �Xj

is hier-
archically hyperarc-consistent with a combination of some abstract labels of �X1

, . . . ,
�Xj�1

, �Xj�1
, . . . , �Xm. An abstract label � �q

Xj
is hierarchically hyperarc-consistent with

a combination of abstract labels ��q1
X1
, . . . , �

�qj�1
Xj�1

, �
�qj+1
Xj+1

, . . . , ��qm
Xm

i� the set of leaf labels

below � �q
Xj

in the domain tree is hyperarc-consistent with the sets of leaf labels below the

��q1
X1
, . . . , �

�qj�1
Xj�1

, �
�qj+1
Xj+1

, . . . , ��qm
Xm

.

5.2.1 The hierarchical domain predicates Ac and Sc

In order to implement a generalized version ofDirectedHyperRevisewe need two new
sets of predicates derived from the set of compound labels that constitute a constraint c.
These are predicates on the abstract labels D i1i2:::ik

X needed to carry out the operations
described above. We de�ne

Ac(D
�q
Xj
; D�q1

X1
; : : : ; D

�qj�1
Xj�1

; D
�qj+1
Xj+1

; : : : ; D�qm
Xm

)

to be true i� for all elements belonging to D �q
Xj

there are elements in D�q1
X1
, : : :, D

�qj�1
Xj�1

,

D
�qj+1
Xj+1

, : : :, D�qm
Xm

that are compatible with it. Analogously, we de�ne

Sc(D
�q
Xj
; D�q1

X1
; : : : ; D

�qj�1
Xj�1

; D
�qj+1
Xj+1

; : : : ; D�qm
Xm

)

to be true i� for some element belonging to D �q
Xj

there are elements in D�q1
X1
, : : :, D

�qj�1
Xj�1

,

D
�qj+1
Xj+1

, : : :, D�qm
Xm

that are compatible with it.

For each constraint c = CfX1;:::;Xmg we have to compute the hierarchical domain pred-
icates Ac and Sc. This can be done inductively by starting from the compound labels in
the constraint de�nition as we well see in the next section.

5.2.2 Inductive computation of the hierarchical predicates

The hierarchical predicate Ac is true i� all values in the abstract label D �q
Xj

are supported
by some values in the abstract labels for the remaining variables of the constraint c.

Ac(D
�q
Xj
; D�q1

X1
; : : : ; D

�qj�1
Xj�1

; D
�qj+1
Xj+1

; : : : ; D�qm
Xm

)

� 8vj 2 D
�q
Xj

: 9v12D
�q1
X1
� � � 9vj�12D

�qj�1
Xj�1
9vj+12D

�qj+1
Xj+1
� � � 9vm2D

�qm
Xm

:

satis�es((hX1  v1i,: : :,hXj  vji,: : :,hXm  vmi); c)
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As we assume the constraint c to be given as the set of all compound labels representing
exactly those value combinations that are allowed by the constraint, we can represent
each m-ary constraint as anm-dimensional Boolean array Bc, in each dimension i ranging
over the domain size of the ith variable Xi.

The notion of hierarchical hyperarc-consistency is undirected as hyperarc-consistency
is. Thus, we have to compute the following base instances of the predicate Ac for each
variable Xj = X1; : : : ; Xm.

Ac(D
�qj
Xj
; D�q1

X1
; : : : ; D

�qj�1
Xj�1

; D
�qj+1
Xj+1

; : : : ; D�qm
Xm

) � Bc[v1; : : : ; vm]

where theD�q1
X1

toD�qm
Xm

are leaf elements with the singleton values v1 to vm, i.e.D
�qi
Xi

= fvig
for all 1 � i � m, which also means that b �qiXi

= 0 for all 1 � i � m. Starting from these
base instances, we can then inductively compute the `higher' instances as follows, that
is, we move from the leafs to the top of the domain trees.

Ac(D
�qj
Xj
; D �q1

X1
; :::; D

l1:::lkl�1

Xl
; :::; D �qm

Xm
) =

_
1�lkl�b

Ac(D
�qj
Xj
; D �q1

X1
; :::; D

l1:::lkl�1lkl
Xl

; :::; D �qm
Xm

)

with b being the branching rate at node D
l1:::lkl�1

Xl
. This means that on the existentially

quanti�ed (non-�rst) argument positions of the predicate Ac we can move up in the
domain tree by performing a bitwise OR on the predicate instances for all the subdomains
of that node. Clearly, for �nally computing the predicate Ac with moving up in the �rst
argument position, a bitwise AND on the predicate instances for all the b subdomains

has to be performed where b denotes the branching rate at node D
j1:::jkj�1

Xj
:

Ac(D
j1:::jkj�1

Xj
; D �q1

X1
; :::; D �qm

Xm
) =

^
1�jkj�b

Ac(D
j1:::jkj�1jkj
Xj

; D �q1
X1
; :::; D �qm

Xm
)

We shall now illustrate the inductive computation of the hierarchical domain predicate
Ac for c being the different-colors constraint in the de�nition of the hierarchical
extended map-coloring problem requiring two neighbored states to be assigned di�erent
colors.2 As mentioned above, the constraint de�nition can be represented as a relation
matrix that forms an m-ary Boolean array|in this case a two-dimensional array.

Bc =

2
666666664

r bb bg db dg
r 0 1 1 1 1
bb 1 0 1 0 1
bg 1 1 0 1 0
db 1 0 1 0 0
dg 1 1 0 0 0

3
777777775

Although the formalism presented can be applied to constraints of arbitrary arity, for
illustration purposes a binary constraint appears most convenient.

2For this example we do not consider the `relaxed' version where for some pairs of states same colors
are allowed to get the problem solvable.
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Thus, we directly obtain the base instances for the hierarchical domain predicate Ac.

Ac(D
i1i2
Xi

; D j1j2
Xj

) =

2
66666666666664

D 11
Xj

D 12
Xj

D 13
Xj

D 21
Xj

D 22
Xj

D 11
Xi

0 1 1 1 1

D 12
Xi

1 0 1 0 1

D 13
Xi

1 1 0 1 0

D 21
Xi

1 0 1 0 0

D 22
Xi

1 1 0 0 0

3
77777777777775

From these base predicates we can then move up in the domain tree of the second
argument position, i.e. move from D 1j2

Xj
to D 1

Xj
and from D 2j2

Xj
to D 2

Xj
, respectively, and

further from D 1
Xj

and D 2
Xj

to DXj
by ORing together corresponding columns:

Ac(D
i1i2
Xi

; D j1
Xj
) =

2
66666666666664

D 1
Xj

D 2
Xj

D 11
Xi

1 1

D 12
Xi

1 1

D 13
Xi

1 1

D 21
Xi

1 0

D 22
Xi

1 0

3
77777777777775

Ac(D
i1i2
Xi

; DXj
) =

2
66666666666664

DXj

D 11
Xi

1

D 12
Xi

1

D 13
Xi

1

D 21
Xi

1

D 22
Xi

1

3
77777777777775

The �rst column of Ac(D
i1i2
Xi

; D j1
Xj
) is obtained by bitwise ORing the �rst, second, and

third columns of Ac(D
i1i2
Xi

; D j1j2
Xj

); the second column of Ac(D
i1i2
Xi

; D j1
Xj
) is obtained by

bitwise ORing the fourth and �fth columns of Ac(D
i1i2
Xi

; D j1j2
Xj

). From Ac(D
i1i2
Xi

; D j1j2
Xj

)
we can also move up in the domain tree of the �rst argument position, i.e. move from
D 1i2

Xi
to D 1

Xi
and from D 2i2

Xi
to D 2

Xi
, respectively, and then further from D 1

Xi
and D 2

Xi
to

DXi
:

Ac(D
i1
Xi
; D j1j2

Xj
) =

2
6664

D 11
Xj

D 12
Xj

D 13
Xj

D 21
Xj

D 22
Xj

D 1
Xi

0 0 0 0 0

D 2
Xi

1 0 0 0 0

3
7775

Ac(DXi
; D j1j2

Xj
) =

2
4 D 11

Xj
D 12

Xj
D 13

Xj
D 21

Xj
D 22

Xj

DXi
0 0 0 0 0

3
5

Furthermore, from Ac(D
i1i2
Xi

; D j1
Xj
) we can also induce Ac(D

i1
Xi
; D j1

Xj
) and further obtain

Ac(DXi
; D j1

Xj
) as follows:

Ac(D
i1
Xi
; D j1

Xj
) =

2
6664

D 1
Xj

D 2
Xj

D 1
Xi

1 1

D 2
Xi

1 0

3
7775 Ac(DXi

; D j1
Xj
) =

2
4 D 1

Xj
D 2

Xj

DXi
1 0

3
5
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To illustrate the meaning of these numbers, consider the table for Ac(DXi
; D j1

Xj
): The

entry in the �rst column is a 1, which indicates that it is true that for all elements in
DXi

= fr; bb; bg; db; dgg there is an element in D 1
Xj

= fr; bb; bgg (the bright colors) such
that the different-colors constraint is satis�ed. However, as the entry in the second
column is a 0, it is not true that for all elements in DXi

there is also an element in
D 2

Xj
= fdb; dgg (the dark colors) such that the constraint is satis�ed.

Finally, we can then take Ac(D
i1i2
Xi

; DXj
) and obtain �rst Ac(D

i1
Xi
; DXj

) and in the very
last step Ac(DXi

; DXj
):

Ac(D
i1
Xi
; DXj

) =

2
6664

DXj

D 1
Xi

1

D 2
Xi

1

3
7775 Ac(DXi

; DXj
) =

2
4 DXj

DXi
1

3
5

As introduced in Section 5.2.1, we also de�ne a set of hierarchical domain predicates
Sc such that the predicate Sc is true i� some value in the abstract label D �q

Xj
is supported

by some values in the abstract labels for the remaining variables of the constraint c.

Sc(D
�q
Xj
; D�q1

X1
; : : : ; D

�qj�1
Xj�1

; D
�qj+1
Xj+1

; : : : ; D�qm
Xm

)

� 9vj 2 D
�q
Xj

: 9v12D
�q1
X1
� � � 9vj�12D

�qj�1
Xj�1
9vj+12D

�qj+1
Xj+1
� � � 9vm2D

�qm
Xm

:

satis�es((hX1  v1i,: : :,hXj  vji,: : :,hXm  vmi); c)

The predicate S can also be computed inductively starting from the relation matrix Bc.
As for the A predicate, the relation matrix Bc also constitutes the base instances of S.
Similarly to the computation of A, we can compute the `higher' instances as follows:

Sc(D
�qj
Xj
; D �q1

X1
; :::; D

l1:::lkl�1

Xl
; :::; D �qm

Xm
) =

_
1�lkl�bkl

Sc(D
�qj
Xj
; D �q1

X1
; :::; D

l1:::lkl�1lkl
Xl

; :::; D �qm
Xm

)

Sc(D
j1:::jkj�1

Xj
; D �q1

X1
; :::; D �qm

Xm
) =

_
1�jkj�bkj

Sc(D
j1:::jkj�1jkj
Xj

; D �q1
X1
; :::; D �qm

Xm
)

with bkl and bkj being the branching rates at nodes D
l1:::lkl�1

Xl
and D

j1:::jkj�1

Xj
, respec-

tively. In other words the hierarchy of Sc predicates is computed by collapsing the
Bc table: ORing together subsets of rows or subsets of columns. Hence, we need not
make any di�erence between existentially quanti�ed and universally quanti�ed argument
positions|as all abstract domains are existentially quanti�ed in the de�nition of Sc.

5.3 A hierarchical hyperarc-consistency algorithm

We are now in a position to de�ne a generalized EnforceHierarchicalHyperArc-
Consistency algorithm. The algorithm uses the general constraint propagation struc-
ture of EnforceHyperArcConsistency (see Figure 3.14 on page 58) but uses Di-
rectedHierarchicalHyperRevise as an extension toDirectedHyperRevise (see
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procedure DirectedHierarchicalHyperRevise(c;Xj):
Delete  false
Q1  �Xj

�Xj
 ;

while Q1 6= ; do
select and delete an element � �q

Xj
from Q1

Q2  f(d1; : : : ; dj�1; dj+1; : : : ; dm) j di 2 �Xi
g

Found  false
while Q2 6= ; and not Found do

select and delete a combination (d1; : : : ; dj�1; dj+1; : : : ; dm) from Q2

if Ac(�
�q
Xj
; d1; : : : ; dj�1; dj+1; : : : ; dm) then

�Xj
 �Xj

[� �q
Xj

Found  true
endif

endif
if not Found then

Delete  true
if b �qXj

> 0 then
Q2  f(d1; : : : ; dj�1; dj+1; : : : ; dm) j di 2 �Xi

g
while Q2 6= ; and not Found do

select and delete a combination (d1; : : : ; dj�1; dj+1; : : : ; dm) from Q2

if Sc(�
�q
Xj
; d1; : : : ; dj�1; dj+1; : : : ; dm) then

for r from 1 to b �qXj
do

Q1  Q1 [ fD
�qr
Xj
g

endfor
Found  true

endif
endwhile

endif
endif

endwhile
return Delete

Figure 5.3: Procedure DirectedHierarchicalHyperRevise

Figure 3.13 on page 58) in order to enforce (directed) hierarchical hyperarc-consistency
on a constraint c concerning a variable Xj � vars(c) = fX1; : : : ; Xmg.

The procedure DirectedHierarchicalHyperRevise implements the generalized
hyperarc-consistency algorithm introduced in Section 5.2. In particular, after the appli-
cation of DirectedHierarchicalHyperRevise(c,Xj) the constraint c will be hierar-
chically hyperarc-consistent for the variable Xj in the sense of De�nition 31.

The main while loop tests each abstract label in �Xj
to see if it is hierarchically

hyperarc-consistent. It does that by testing each label � �q
Xj

in �Xj
against the abstract

labels in �Xi
for all other variables X1 to Xj�1 and Xj+1 to Xm.
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The inner while loop looks for a combination3 (d1; : : : ; dj�1; dj+1; : : : ; dm) of abstract
labels in the respective current domains � �qi

Xi
of the other variables such that Ac is true.

In that case, � �q
Xj

survives unchanged in �Xj
.

If not and � �q
Xj

is not a leaf (b �qXj
> 0) then the third while loop looks for a combination

(d1; : : : ; dj�1; dj+1; : : : ; dm) of abstract labels such that at least some elements in � �q
Xj

are
compatible with values in the domains d1 to dj�1 and dj+1 to dm in which case Sc is true.
In that case, � �q

Xj
is replaced in Q1 by its subdomains. They must be tested similarly on

Ac and maybe also Sc before this invocation of DirectedHierarchicalHyperRevise
returns. The return value �nally indicates to the caller whether the domain of the variable
Xj has been restricted or not.

5.3.1 Correctness and Termination

It should be shown that DirectedHierarchicalHyperRevise is correct and always
terminates.

Proposition 7 (correctness of DirectedHierarchicalHyperRevise) Let c be a
constraint and Xj be a variable with Xj 2 vars(c) = fX1; : : : ; Xmg. Then, after apply-
ing DirectedHierarchicalHyperRevise the constraint c is hierarchically hyperarc-
consistent for variable Xj.

Proof. The current domain �Xj
starts as the empty set and adds members � �q

Xj
only

within the second while loop whenAc(�
�q
Xj
; d1; : : : ; dj�1; dj+1; : : : ; dm) is true. Thus, when

DirectedHierarchicalHyperRevise returns, all members of �Xj
are hierarchically

hyperarc-consistent with a combination of some abstract labels in the domains of the
other variables X1 to Xj�1 and Xj+1 to Xm. Hence, the constraint c is hierarchically
hyperarc-consistent for variable Xj and thus the algorithm is correct. 2

Proposition 8 (termination of DirectedHierarchicalHyperRevise) The pro-
cedure DirectedHierarchicalHyperRevise always terminates.

Proof. All while loops in the procedure are controlled by the queues Q1 and Q2. The
number of elements on the queues is strong monotonically decreasing, except for the case
when the Sc predicate has been tested successfully and a �nite number of subdomains
are added to Q1. However, as the domain trees are noncyclic, this can happen only
�nitely many times, and hence the procedure DirectedHierarchicalHyperRevise
will always terminate. 2

5.3.2 Solving CSPs over hierarchically structured domains

As mentioned before, the extensions for dealing with hierarchically structured domains
only a�ect the domain revision procedure and require no change at all to the Enforce-

3Note that it is not necessary to compute the set of all possible combinations and assign it to the
queue Q2 as the algorithm suggests. Instead, it su�ces to generate combinations until one is found such
that Ac or Sc is true. This is also the way how Contax checks for hierarchical hyperarc-consistency.
However, the presentation as in Figure 5.3 is used to have the algorithm easier to understand.
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HyperArcConsistency procedure. Thus, we can de�ne a EnforceHierarchical-
HyperArcConsistency procedure the same as EnforceHyperArcConsistency,
except that it uses the procedure DirectedHierarchicalHyperRevise instead of
DirectedHyperRevise.

Using the EnforceHierarchicalHyperArcConsistency procedure, we can
then also easily adapt the GenerateSolutions algorithm presented in Figure 3.15
to dealing with hierarchically structured domains. The only necessary change (be-
sides replacing EnforceHyperArcConsistency and DirectedHyperRevise by
EnforceHierarchicalHyperArcConsistency and DirectedHierarchicalHy-
perRevise, respectively) is that in step SelVal the algorithm does not select individual
values v 2 �Xi

but selects abstract domains � �q
Xi
2 �Xi

. The remaining part of theGen-
erateSolutions algorithm can be reused unchanged.

Moreover, as the current domain �Xi
of a variable Xi may �nally contain non-leaf ab-

stract labels, the algorithm can also return intensional solutions which are more compact
than enumerating all the individual elements belonging to an abstract label.

In order to illustrate how the DirectedHierarchicalHyperRevise procedure
works, we consider a small example.

Example 18 (Intensional solutions using hierarchical hyperarc-consistency)
Assume the variable HH to be already assigned the color red, i.e. �HH = frg, and c
being the different-color constraint on HH and SH where the current domain of SH
still contains all colors, i.e. �SH = fr; bg; dg; bb; dbg. Now consider the procedure call

DirectedHierarchicalHyperRevise(c,SH).

As Ac(�SH;�HH) = 0 but Sc(�SH;�HH) = 1, the subdomains � 1
SH

(representing the
bright colors) and � 2

SH
(representing the dark colors) are added to the queue Q1.

In the next loop, � 1
SH is checked: Ac(�

1
SH;�HH) = 0 and Sc(�

1
SH;�HH) = 1. Thus, � 1

SH

is replaced in Q1 by � 11
SH

representing r, � 12
SH

representing bg, and � 13
SH

representing bb.

The next main loop checks � 2
SH

(representing the dark colors). As Ac(�
2
SH
;�HH) = 1, all

dark colors for SH are compatible with r for HH. Thus, the abstract label � 2
SH

is added to
�SH.

The �nal three main loops check the abstract labels � 11
SH
, � 12

SH
, and � 13

SH
for SH from

which � 12
SH and � 13

SH survive because Ac(�
11
SH;�HH) = 0, but Ac(�

12
SH;�HH) = 1 and

Ac(�
13
SH
;�HH) = 1.

Hence, the resulting domain �SH is the set of abstract labels f� 2
SH
;� 12

SH
;� 13

SH
g that rep-

resents the set of all dark colors (� 2
SH) together with the individual colors bright green

(� 12
SH
) and bright blue (� 13

SH
).

Although the intensional solution � 2
SH does only represent two individual domain ele-

ments, this small example may already illustrate the advantages of dealing with abstract
labels (intensional solutions) rather than with individual elements as in the procedure
DirectedHyperRevise before. In the next section, we will present how the Contax
user can bene�t of the extensions discussed in this chapter.
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5.4 Hierarchically Structured Domains in Contax

In this section, we will now present how hierarchically structured domains can be repre-
sented in Contax and how constraints over them can be e�ciently processed. Finally,
we will also show how the hierarchical map-coloring problem can be represented and
solved in Contax.

5.4.1 Representing hierarchical domains

In Section 5.1, we have already seen how hierarchical domains can be represented in
Contax using a generalized version of the def-domain macro introduced in Section 3.2.4.
The generalization simply is that any already de�ned domain can be further re�ned
hierarchically by de�ning its subdomains in just the same way using the def-domain

macro. This means that in a statement of the form

(def-domain dom (dom1; : : : ; domk)),

the domi do not necessarily represent individual objects. Individual objects are rep-
resented by leaf nodes in the domain hierarchy, i.e. as singleton domains that are not
further re�ned. For example, the domains for the hierarchical map-coloring problem can
in Contax be de�ned as follows:

(def-domain colors (bright dark))

(def-domain bright (r bb bg))

(def-domain dark (db dg))

This extension to hierarchically de�ne the domains in Contax can already well be used
without the extensions for processing constraints over them that have been discussed in
the previous sections: The hierarchical domain de�nitions above can simply be trans-
formed into the following `at' domain de�nitions:

(def-domain colors (r bb bg db dg))

(def-domain bright (r bb bg))

(def-domain dark (db dg))

As it can be seen more declarative to express the hierarchical structure of the domain
rather than to enumerate even redundantly all individuals in each domain, this extension
directly improves the declarativity of our approach. Therefore, the Contax kernel pre-
sented in Section 3.2.4 already supports hierarchical domain de�nitions which are then
compiled into `at' de�nitions for each non-leaf hierarchical domain.

5.4.2 Using Taxon taxonomies as hierarchical domains

De�ning domains in the way described in Section 5.4.1 results in a constitutive approach
to structuring the domain. However, in some applications it seems more appropriate to
declaratively de�ne what the common properties of all individuals are that belong to a
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particular domain. This can be done very declaratively using terminological knowledge
representation systems in the tradition of KL-ONE [Brachman and Schmolze, 1985]

that allow for de�ning concepts using terminological logics and provide mechanisms to
automatically compute the hierarchical4 structure of the concepts.

As terminological knowledge representation systems o�er a purely declarative means
to de�ne the domain of variables in a CSP, Contax also allows to incorporate the
hierarchical domain structure represented and computed by Taxon, a terminologi-
cal knowledge representation system also developed at DFKI [Hanschke et al., 1991,
Hanschke, 1993].

Having loaded and classi�ed5 the relevant concepts in Taxon, the resulting domain
structure can also be used in Contax. For example, in the CIM application from which
the lathe-tool selection problem in Chapter 8 is taken, the domain of workpieces was
de�ned in terms ofTaxon concepts. It could be imported to and used byContax simply
by loading Taxon and Contax together in the same CommonLisp environment and
then start a concept-to-domain transformation that will not be discussed in this thesis:

(import-taxon-domain workpieces)

Given this call, Contax will de�ne the domain workpieces together with domains
corresponding to all Taxon concepts that are subsumed by the concept workpieces.
Thus, the Taxon interface provided in Contax also contributes to a more declarative
representation of CSPs, respectively their domains, and enables sharing and reusing of
domain taxonomies such that they are de�ned once and can be used in many di�erent
applications.

5.4.3 Constraints over hierarchical domains

As presented so far, hierarchical domains are only a means of structured and more declar-
ative representation of the domains without inuencing the processing of constraints over
them. Depending on the domain structure, using the hierarchical hyperarc-consistency
technique presented in this chapter may not pay o� for all constraints, especially not for
constraints over variables that range over `at' domains. Therefore, Contax allows for
explicitly request the hierarchical hyperarc-consistency technique to be used for a partic-
ular constraint. This is done when creating an instance of a constraint type. Consider,
for example, creating the constraint instance that has been discussed in Example 18:

(make-constraint :name C7

:type different-colors

:propagation hierarchical

:color1 HH

:color2 SH)

4The resulting subsumption graph does not necessarily build a hierarchy, but may in general simply
form a directed acyclic graph structure.

5Classi�cation in terminological knowledge representation systems means computing the subsumption
relations between all concepts de�ned in the system.
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When creating a constraint instance with hierarchical propagation mode6, Con-
tax automatically computes the hierarchical domain predicates A and S such that
they are available when needed for propagation, i.e. for enforcing hierarchical hyperarc-
consistency.

As checking for hierarchical hyperarc-consistency is always local to a particular con-
straint, it is also possible to use di�erent hierarchical structures of the same domain
in di�erent constraints. This becomes especially important when di�erent constraints
linked to the same variable exploit di�erent properties of the individuals in the domain.
Thus, one hierarchical structure of the domain may be better suited for one constraint
than another.

For example, for expressing and processing the constraint that no neighbored states
should be both assigned dark colors, the domain structure shown in Figure 5.1 is well
suited as it supports the notion of bright and dark colors. However, for representing the
basic constraint that neighbored states should be assigned di�erent colors, the domain
structure shown in Figure 5.4 seems more adequate.
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dark green bright green red dark bluebright blue

green blue

color

Figure 5.4: Alternative hierarchical structure of the color domain

Therefore, Contax allows to specify the domain structure to be used for a variable
separately with each constraint type. This exactly is the reason for the presence of
the :domains keyword in the de�nition of the def-primitive-constraint macro (see
Section 3.2.4) which otherwise would be redundant as a domain is also speci�ed with the
creation of a variable.

Another bene�t of using multiple domain structures is, that Contax also allows to
use names of entire (sub)domains when enumerating all compound labels that constitute
a constraint. If a value in such a compound label is the name of a domain, then Contax
will successively substitute the domain by all individuals belonging to it. Thus, using
domain names in constraint de�nitions provides a compact constraint representation.

6Alternatively, the user can specify :propagation extensional if `normal' hyperarc-consistency
shall be enforced on the constraint extension, i.e. constraint propagation shall work as described in
Chapter 3. If no propagation mode is speci�ed, the extensional mode will be assumed.
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In particular, it also allows to reuse the de�nition of the different-colors constraint
from Figure 3.17 even when some subdomains in the color domain have been re�ned to
separate bright and dark variants of the colors.

5.4.4 The hierarchical map-coloring problem in Contax

In the previous sections, we have seen how Contax has been extended to support
hierarchically structured domains. Thus, we can now discuss how to represent and �nally
solve the hierarchical map-coloring problem (Problem 3 on page 92) using Contax.

(def-domain colors-rgb (red green blue))

(def-domain red (r))

(def-domain green (bg dg))

(def-domain blue (bb db))

(def-domain colors-bd (bright dark))

(def-domain bright (r bb bg))

(def-domain dark (db dg))

(def-primitive-constraint different-colors

:interface (c1 c2)

:domains (colors-rgb colors-rgb)

:tuples ((red green) (red blue) (green red)

(green blue) (blue red) (blue green)))

(def-primitive-constraint not-both-dark

:interface (c1 c2)

:domains (colors-bd colors-bd)

:tuples ((bright bright) (bright dark) (dark bright)))

(def-compound-constraint neighbored

:interface (c1 c2)

:constraints ((different-colors c1 c2) (not-both-dark c1 c2)))

(def-primitive-constraint smallborder

:interface (c1 c2)

:domains (colors-bd colors-bd)

:tuples ((bright dark) (dark bright)

(r bg) (r bb) (bg bb) (bg r) (bb r) (bb bg)))

(def-predicative-constraint 4equal

:interface (c1 c2 c3 c4)

:domains (colors-bd colors-bd colors-bd colors-bd)

:predicate (= c1 c2 c3 c4))

Figure 5.5: Representing the hierarchical German-map coloring problem in Contax
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Figure 5.5 shows the representation of domains and constraint types for the hierarchical
extended map-coloring problem. The overall constraint neighbored between two neigh-
boring states can ideally be represented as a compound constraint that combines two
primitive constraints over the same variables but using di�erent hierarchical structures
for the color domain: color-rgb for the inequality different-colors on the level of the
colors red, green, and blue; color-bd for the not-both-dark constraint which can be
de�ned most naturally when grouping bright and dark colors to subdomains respectively.

Figure 5.6 �nally shows the variables and constraint instances that complete the rep-
resentation of the hierarchical map-coloring problem in Contax.

(make-variable :name SH :domain colors)

... 14 more variables ...

(make-variable :name SN :domain colors)

(make-constraint :type neighbored :c1 SH :c2 HH :propagation hierarchical)

(make-constraint :type neighbored :c1 SH :c2 NS :propagation hierarchical)

(make-constraint :type neighbored :c1 HH :c2 NS :propagation hierarchical)

(make-constraint :type neighbored :c1 NS :c2 HB :propagation hierarchical)

(make-constraint :type neighbored :c1 NS :c2 NW :propagation hierarchical)

(make-constraint :type neighbored :c1 NS :c2 HS :propagation hierarchical)

(make-constraint :type neighbored :c1 NW :c2 HS :propagation hierarchical)

(make-constraint :type neighbored :c1 NW :c2 RP :propagation hierarchical)

(make-constraint :type neighbored :c1 HS :c2 RP :propagation hierarchical)

(make-constraint :type smallborder :c1 HS :c2 BW :propagation extensional)

(make-constraint :type neighbored :c1 HS :c2 BY :propagation hierarchical)

(make-constraint :type neighbored :c1 RP :c2 SL :propagation hierarchical)

(make-constraint :type neighbored :c1 RP :c2 BW :propagation hierarchical)

(make-constraint :type neighbored :c1 BW :c2 BY :propagation hierarchical)

(make-constraint :type neighbored :c1 SH :c2 MV :propagation hierarchical)

(make-constraint :type neighbored :c1 NS :c2 MV :propagation hierarchical)

(make-constraint :type neighbored :c1 NS :c2 SA :propagation hierarchical)

(make-constraint :type smallborder :c1 MV :c2 SA :propagation extensional)

(make-constraint :type neighbored :c1 NS :c2 TH :propagation hierarchical)

(make-constraint :type neighbored :c1 HS :c2 TH :propagation hierarchical)

(make-constraint :type neighbored :c1 BY :c2 TH :propagation hierarchical)

(make-constraint :type neighbored :c1 MV :c2 BB :propagation hierarchical)

(make-constraint :type neighbored :c1 SA :c2 BB :propagation hierarchical)

(make-constraint :type neighbored :c1 BB :c2 BL :propagation hierarchical)

(make-constraint :type neighbored :c1 SA :c2 SN :propagation hierarchical)

(make-constraint :type neighbored :c1 BB :c2 SN :propagation hierarchical)

(make-constraint :type neighbored :c1 SA :c2 TH :propagation hierarchical)

(make-constraint :type neighbored :c1 TH :c2 SN :propagation hierarchical)

(make-constraint :type smallborder :c1 BY :c2 SN :propagation extensional)

(make-constraint :type 4equal :c1 SL :c2 BL :c3 HB :c4 HH)

Figure 5.6: Representing the hierarchical German-map coloring problem in Contax
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If we now start solving the hierarchical map-coloring problem with the initial assignment
of the subdomain green for Hessen, we obtain a set of four solutions from which two of
them contain a subdomain as value. As these subdomain contains two individuals, we
have a total number of six solutions:

(solve :all

:HS (green)

:solutions all)

=) ((TH BB BW SL NW HB SH BL SN SA MV BY RP HS NS HH)

(r r r dg r dg r dg db bg dg bb bb dg bb dg)

(r r green dg r dg r dg db bg dg bb bb dg bb dg)

(r r r bg r bg r bg db bg dg bb bb bg bb bg)

(r r green bg r bg r bg db bg dg bb bb bg bb bg)

Figure 5.7: Solving the hierarchical German-map coloring problem with Contax

The �rst of these solutions is also shown in Figure 5.8. The other solutions can be
obtained by (1) using any green color for Baden-W�urttemberg (BW) or (2) by using
bright green (bg) instead of dark green (dg) for the small states. These modi�cations
can all be made without a�ecting the colors assigned to the remaining states, and thus
we obtain a total number of 6 solutions.
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Figure 5.8: A solution to the hierarchical German-map coloring problem
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5.5 Discussion and Related Work

In this chapter, we have presented the concept of hierarchical hyperarc-consistency that
exploits the internal structuring of domain values into a hierarchy of subdomains. The
procedure DirectedHierarchicalHyperRevise that we have developed uses the
domain hierarchy in order to process values with common properties as one unit rather
than individually as classical constraint solvers do.

Therefore, the algorithm is based on precompiled information about the relations
between subdomains. These hierarchical domain predicates Ac and Sc have to be com-
puted once for each constraint c. This can be done prior to solving a concrete application
problem. Using a bit vector representation for the Ac and Sc matrices, these tables can
be computed very e�ciently even for large domains. However, it seems obvious that
the e�ect of using hierarchical hyperarc-consistency processing instead of `at' hyperarc-
consistency checking heavily depends on the structure of the domain under consideration.

Also, one should not expect hierarchical hyperarc-consistency to improve on the worst
case performance of simple hyperarc-consistency. Indeed, since it relies on a hierarchi-
cal organization of the domain, intuition suggests that one could perversely structure
the domains in the worst possible way to ensure worst case behavior worse than stan-
dard hyperarc-consistency. Empirical studies have shown that for small hierarchies or
hierarchies with a high branching rate in relation to the height of the hierarchy, using
hierarchical hyperarc-consistency may not pay o�. Therefore, the Contax system al-
lows to select those constraints for which hierarchically hyperarc-consistency processing
is required. As this decision somehow depends on characteristics of the domain struc-
tures, it is worth studying how the decision can be made automatically based on these
characteristics. However, this is still an open problem that also requires more empirical
studies on large problems to be carried out. Nevertheless, it shows an interesting and
promising direction for further research that will also contribute to further improve the
declarativity of our approach.

In [Mackworth et al., 1985], an algorithm called HAC (hierarchical arc-consistency) is
presented that also builds on hierarchically structuring the variable domains. However,
this approach is limited to dealing with complete strict binary trees as domain structures
and can also only be applied to binary CSPs. Recently, Sidebottom and Havens have
applied hierarchical arc-consistency techniques to numerical processing [Sidebottom and
Havens, 1991]. The interesting relation to our work is that numerical domains, e.g. IR, are
hierarchically re�ned into subdomains representing intervals. However, in this approach
the hierarchical domain structure is generated dynamically whereas our approach of
enforcing hierarchical hyperarc-consistency is based on a precompiled domain structure
represented by the bit matrices A and S.



6

Finite Domain Constraints in Logic

Programming

In the previous chapters, we have presented techniques to deal with weighted constraints
and overconstrained problems as well as with constraints over hierarchically structured
domains. The intention for this research was to make constraint processing techniques
available for a broader range of application problems: Weighted or overconstrained prob-
lems could not be tackled with classical CSP techniques and hierarchically structured
domains could only be dealt with quite ine�ciently.

However, to solve an application problem it is not su�cient to have a constraint solver
at hand. In nearly all applications there are tasks to be performed that CSP techniques
cannot deal with, e.g. user interaction and overall control organization. Therefore, con-
straint solving techniques have to be made available within a universal programming
language.

One approach is to embed a constraint solver in some programming language such
that the main program delegates appropriate subtasks to the constraint solver. As most
academic constraint solvers are implemented in Lisp, many of them provide interfaces
to be called from within any Lisp application: ConstraintLisp [Liu and Ku, 1992]

o�ers a Lisp-based object-oriented constraint solver, Consat has been embedded in
the knowledge representation workbench Babylon [G�usgen et al., 1987], and there is
also a programmer's interface to the Contax system which has been used in the sports
scheduling application to be presented in Chapter 8.

All these approaches can only o�er a loose coupling of the programming language,
e.g. Lisp, with the constraint solver such that as a result constraint processing cannot
be interleaved with processing of procedures or functions in the main program. How-
ever, if we choose a logic programming language like Prolog as the host language for
our constraint solver, we can achieve a much tighter integration as the relational form of
knowledge representation and programming in Prolog is very close to the notion of con-
straints. Therefore, in this chapter we will investigate how to integrate constraint solving
techniques within logic programming. As the topic of this thesis are �nite domain con-
straints, we will focus on consistency techniques over Finite Domains. In Section 6.1 we
will �rst introduce the basic idea of integrating consistency techniques in logic program-
ming and will present the two most prominent consistency techniques, forward-checking
and looking-ahead. Together with other approaches that have been presented in the pre-
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vious chapters, these techniques will then in Section 6.2 be reviewed from the viewpoint
of �nding a compromise between problem reduction and backtrack search in order to
minimize the total problem-solving costs. These considerations motivate the develop-
ment the weak looking-ahead (WLA) technique, that will be presented more formally in
Section 6.3. However, a detailed illustration again using a variant of our running exam-
ple, the German-map coloring problem, will be given in Section 6.4. The chapter will
then be concluded with Section 6.5 by giving an overview on the FiDo system, in which
all consistency techniques discussed in this chapter have been implemented and for which
various implementational approaches have been studied.

6.1 Consistency Techniques in Logic Programming

What makes logic programming especially well-suited for stating constraint problems, are
the relational form it provides, and its nondeterminism: Since constraints are nothing
but relations between objects represented as variables, they can be formulated naturally
and conveniently in logic programs; and the nondeterminism liberates the programmer
from doing explicit tree search and allows declarative formulation of problems.

Therefore, logic programming seems appropriate for stating constraints, and so for
stating CSPs, e.g. discrete combinatorial problems. Unfortunately, standard logic pro-
gramming as realized e.g. inProlog does not support e�cient methods for solving CSPs.
The drawbacks of logic programming have led to intensive research e�orts aimed at im-
proving the control facilities of logic programming languages. One approach, to which
increasing attention has been paid over the past years, is constraint logic programming.
The main idea is to combine the strong points of logic programming, which are its declar-
ativity, its simple and clear semantics based on a well-understood mathematical model
and its nondeterminism, with the e�ciency of constraint solving techniques as they have
been presented in the previous chapters.

6.1.1 Constraint logic programming

The general structure of a constraint logic programming system reects its purpose:
the combination of logic programming and constraint solving. Figure 6.1 shows the
organization of a constraint logic programming system.

Basically, it consists of two components, an inference machine doing the logic part,
and an incremental constraint solver, which can be considered as a decision procedure
for a class of constraints. The two modules communicate by an interface. The inference
machine recognizes constraints and passes them to the constraint solver. The latter one
incrementally creates a constraint network and tries to solve the corresponding CSP,
reporting the results back to the inference machine1.

1In real systems, this way of job-sharing can be somehow varying, e.g. some simple constraints can
be directly solved by the inference engine.
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Logic Inference Machine

Constraint Solver

Interface doing inference steps

checking constraint satisfiability

Figure 6.1: The general architecture of a constraint logic programming system

6.1.2 Requirements for �nite domain consistency techniques

In the present thesis, techniques for solving constraints over �nite domains are to be
examined. Therefore, in the following some considerations are made about what is needed
to incorporate constraint satisfaction techniques in the framework of logic programming.

� Finite Domains: In logic programming, all variables range over the Herbrand
universe whereas in the FCSP framework, each variable ranges over a �nite set of
possible values, referred to as the domain of the variable. Thus, we need a domain
concept for logic variables which enables us to restrict the domain of a variable in
an active way.

� Consistency Techniques: Here, we have to de�ne the techniques to be used
in order to achieve an advanced control mechanism by enforcing some level of
consistency in the constraint network and propagating domain re�nements along
the constraints. The crucial point is that the use of consistency techniques provides
the ability of pruning the search space in an active, a priori manner. Values that
are known to be inconsistent with the current variable states can be excluded from
further consideration.

In the following sections we will discuss these issues in some more detail. Although
most of our considerations will we presented quite informally, we shall also provide a
formal de�nition of the consistency techniques that we discuss.2

2As a thorough introduction into logic programming is outside the scope of this thesis, the reader is
expected to be familiar with the basic concepts of logic programming, the declarative and operational
semantics of Prolog, and also with some basic notations that are used in a standard meaning as can
be found e.g. in [Lloyd, 1987] or [Van Hentenryck, 1989].
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6.1.3 Finite domains in logic programming

In order to use FCSP solving techniques within logic programming, the variables to
be handled by these techniques have to be assigned a �nite domain of possible values.
Domains in logic programming can be de�ned as non-empty sets of constants. Thus, the
domain of usual logical variables is the Herbrand universe of the theory that is represented
by the given logic program (cf. Section 2.2). Additionally, some variables are assigned
their own �nite domains which in turn are subsets of the Herbrand universe. These
variables are called domain-variables [Van Hentenryck, 1989].

During SLD resolution logical variables can be bound to any term, including constants
and arbitrary variables. A domain-variableX ranging over a �nite domain DX , however,
can only be bound to (1) values v 2 DX of their domain, or (2) to a domain-variable
ranging over some domain D̂X � DX . As soon as the domain of a domain-variable
becomes a singleton set, the variable is bound to the single value in its domain and thus
becomes a logical variable.

Domain-variables can also take part in uni�cation with logical variables or other
domain-variables. Hence, the following three additional cases have to be taken into
consideration:

� uni�cation of a logical variable with a domain-variable. In that case, the logical
variable is bound to the domain-variable.

� uni�cation of a domain variable with a constant. If the constant is member of the
domain of the variable, uni�cation succeeds and the domain-variable is bound to
the constant. Otherwise, uni�cation fails.

� uni�cation of two domain variables. If the intersection of the two domains is not
empty, uni�cation succeeds and binds both variables to a new one ranging over
that intersection. If the intersection is a singleton set, both variables are bound to
the remaining constant. If the intersection is the empty set, uni�cation fails.

Thus, domain variables can be embedded into logic programming, enforcing some exten-
sions but preserving the main results such as the declarative and procedural semantics
of the language. By extending uni�cation, an active handling of the equality constraint
is provided. Yet, in order to maintain other constraints that way, additional inference
rules have to be de�ned, embodying the consistency techniques presented in this thesis.

6.1.4 Constraints in logic programming

A constraint in the framework of logic programming is characterized by the fact that the
inference rules de�ned in the next section can be applied to it. Therefore, it must be
decidable, i.e. ful�ll the following conditions:

De�nition 32 (constraint in logic programming) An n-ary predicate p is a con-
straint i� for any ground terms t1, : : :, tn one of the following is true: p(t1,: : :,tn) has a
successful refutation, or p(t1,: : :,tn) has only �nitely failed derivations.
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In other words, a predicate p is a constraint, if all its ground instances either succeed or
�nitely fail.

Consistency techniques can be embedded in logic programming, e.g. SLD resolution,
by de�ning additional inference rules to be applied. In the following sections, we will
review the forward-checking and looking-ahead consistency techniques and also present
the corresponding inference rules.

6.1.5 Forward-checking

The idea of forward-checking is formally expressed by the forward-checking inference rule
(FCIR). Informally, a constraint C can be used in a forward-checking manner as soon
as all except one, say X, of its domain-variable arguments are instantiated to a ground
value. Then, C is called forward-checkable. C can be considered a unary predicate C 0(X),
and the set of possible values that can be given to X can be restricted to those elements
a satisfying C 0(a).

For example, let C(X; Y; Z) be X \= Y + Z, with X = 4, Z = 1 and Y ranging over
f1; 2; 3g. Then C 0(V ) � V \= 3. Thus, the domain of Y can be restricted to the set f1; 2g.
Furthermore, if the domain of a variable becomes singleton, the variable is instantiated
to the singleton value. Thus, other constraints can become forward-checkable, keeping
constraint propagation going on.

Before de�ning the FCIR, we shall �rst formally de�ne when the FCIR can be applied
to a constraint.

De�nition 33 (forward-checkable) Be p(t1,: : :,tn) an atom. Then p(t1,: : :,tn) is
forward-checkable, if p is a constraint and there exists only one ti, 1 � i � n, that
is a domain variable, all others being ground.

ti is often referred to as the forward variable of p. Now, we can de�ne the forward-
checking inference rule as follows:

De�nition 34 (forward-checking inference rule, FCIR) Let P be a program, and
let Gi = ?�A1; : : :; Ak; : : :; Am be a goal and �i+1 a substitution. Then the next goal Gi+1

(resolvent) is derived by the FCIR from Gi, P, and �i+1, if the following holds:

1. Ak is forward-checkable, X be the forward variable inside Ak.

2. The new domain of X, �̂X, is de�ned as �̂X = fv 2�X j P j=AkfX vgg.

3. The new substitution �i+1 is de�ned as �i+1 = fX cg, if �X̂ = fcg, or �i+1 =

fX �Xg, where �X is a new domain-variable with D �X = �̂X , otherwise.

4. Finally, the new goal is Gi+1 = ?� �i+1(A1; : : :; Ak�1; Ak+1; : : :; Am).

Forward-checking has turned out to be one of the most popular consistency techniques
[Van Hentenryck and Dincbas, 1988] for several reasons:
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� Forward-checking is a technique which can be easily implemented. For examp-
le, [De Schreye et al., 1990, M�uller, 1991] use Prolog systems with coroutining
facilities to implement forward-checking, whereas [Hein, 1992, Stein, 1993] show
how forward-checking can be integrated into Prolog by adding a set of new WAM
instructions.

� It yields reasonable pruning results for many applications, keeping the computa-
tional costs fairly low.

� There exist sound and complete proof procedures based on normal SLD resolution
combined with forward-checking (see [Van Hentenryck, 1989]).

The main drawback of forward-checking is its strong applicability precondition: A pred-
icate can be executed by the FCIR only if all except one of its variables are instantiated
to a ground value. Thus:

� For predicates with many arguments and/or many variables, at a given point of
computation, there is only a relatively small probability that forward-checking can
be applied to them.

� Especially when computation starts, it is very often the case that no constraint
is forward-checkable. That means that choices have to be made, i.e. variables are
instantiated in a more or less random manner. Thus, no pruning is achieved and
further processing will mainly be done as backtracking search.

� Some constraints, such as =; >;< should not be executed by forward-checking at
all, because they embody a great deal of structural information about the relation
between their arguments. For example, the information that two variables X and
Y are equal should not only be used if X or Y are ground. Rather, the equality
constraint should be maintained from the moment it has been stated (see [M�uller,
1991]).

However, although not really su�cient but as it can easily be implemented, nearly all
�nite domain logic programming extensions provide forward-checking as a basic consis-
tency technique which is then often supplemented by some variant of the looking-ahead
technique that is presented in the next section.

6.1.6 Looking-ahead

Looking-Ahead [Van Hentenryck, 1987] is a variant of arc-consistency checking [Mack-
worth, 1977] as discussed in Chapters 2 and 3 (see De�nition 19 on page 38) and o�ers a
powerful possibility to reduce the number of values that can be assigned to the variables
of a constraint, even if this constraint is not yet forward-checkable. A constraint C is
said to be lookahead-checkable if at least one of its variables is a domain variable, while
all other variables are either ground or domain variables. Note that this applicability
condition is much weaker than the one for forward-checking.
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Informally, the looking-ahead procedure can be described as follows: for every domain
variableX appearing as an argument of an n-ary constraint C, and for every value within
the domain of X, it must be checked whether there exists at least one admissible value
from the domain of each domain variable Y appearing in C so that the constraint C is
satis�ed. As mentioned above, the arguments of C which are no domain variables must
be ground.

For example, let C(X; Y; Z) be X > Y +Z, where X, Y , and Z range over f1; 2; 3; 4g.
Using looking-ahead, the domains can be immediately restricted to X = f3; 4g; Y =
Z = f1; 2g. Note that if we used forward-checking instead, no pruning at all would be
achieved since no forward-condition would be ful�lled. From now on, each time a value
is removed from one of the domains, looking-ahead has to be repeated.

Again, we will give a more formal de�nition of the looking-ahead inference rule (LAIR).
By that rule, constraints can be used, even if more than one variable is left uninstantiated.
Thus, the LAIR generally leads to an earlier pruning of the search space than the FCIR.

De�nition 35 (lookahead-checkable) An atom p(t1; : : :; tn) is lookahead-checkable if
p is a constraint and there exists at least one ti that is a domain-variable. All other tj
are either ground or domain variables.

The domain variables of a lookahead-checkable constraint are referred to as lookahead-
variables.

De�nition 36 (lookahead inference rule, LAIR) Let P be a program, Gi = ?�A1,
. . . , Ak, . . . , Am be a goal and �i+1 a substitution. Gi+1 is derived by the LAIR from Gi,
P, and �i+1 if the following holds:

1. Ak is lookahead-checkable, X1; : : :; Xn are the lookahead variables of Ak.

2. For each Xj, the new domain �̂Xj
= fvj2�Xj

j 9v12�X1
, . . . , vj�12�Xj�1

,
vj+12�Xj+1

, . . . , vn2�Xn: P j= �(Ak) with �=fX1 v1, . . . , Xn vng g.

3. For each Xj, X̂j is bound to the constant c if �̂Xj
= fcg or a new domain variable

which ranges over �̂Xj
, otherwise.

4. �i+1 = fX1 y1; : : :; Xn yng.

5. Gi+1 is either ? � �i+1(A1; : : :; Ak�1; Ak+1; : : :; Am) if at most one X̂j is a domain
variable, or ?� �i+1(A1; : : :; Am), otherwise.

By using looking-ahead, the search space can be pruned at an early stage of compu-
tation. However, standard looking-ahead is a very expensive method of ensuring arc-
consistency. Therefore, for most applications it is considered inappropriate [De Schreye
et al., 1990, Dechter, 1989].

This leads to the question on how much e�ort should be put on consistency enforcing,
i.e. constraint propagation, and what should be left for standard inference, i.e. backtrack-
ing search. This issue will be discussed in the next section.
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6.2 How much Constraint Propagation is useful?

The e�ort to be spent on solving a constraint problem always splits into one part spent
on problem reduction and another part spent on searching for a solution in the reduced
problem space. This is trivially true for the two extremes:

� Generate-and-Test (GT) as discussed in Section 2.3.1 does not perform any
problem reduction at all. Thus, the total costs for solving a constraint problem
using generate-and-test are made up by searching for a solution.

� For Backtrack-free Search (BFS) the problem is as much reduced as needed to
avoid backtracking at all. In general, this requires establishing n-consistency for a
constraint problem with n variables, unless special characteristics of the particular
problem can be explored as we have discussed in Section 3.1.3. Thus, backtrack-
free search puts maximum e�ort on enforcing an appropriate level of consistency
such that no search will be needed at all.

Between these two extremes a broad range opens for various combinations of problem-
reduction and search. Figure 6.2 shows how some of the techniques presented in this
thesis �t into this range.

Computational Cost

Total problem-solving cost
(T = R + S + overhead)

GT SB FC LA BFS

Problem reduction
cost (R)

Search cost (S)

Amount of problem reduction efforts

WLA

Figure 6.2: Problem-Reduction Costs vs Search Costs

The �gure also shows a third curve representing the total problem-solving costs which
are normally higher than the sum of the costs for problem-reduction and search. The
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reason is that except for the extremes some e�ort has to be made for organizing the
interplay of problem-reduction, e.g. consistency enforcement, and backtracking search.

� The Standard Backtracking (SB) approach has been discussed in Section 2.3.1.
It already performs some amount of problem reduction because partial solutions
that violate some constraints among the past variables are discarded and thus the
corresponding subtree in the search space is pruned. As a result, the cost for search
is reduced if compared with the generate-and-test approach.

� Forward-Checking (FC) does also check forward in the sense that consistency
enforcement is extended to future variables as soon as the constraint becomes
forward-checkable. In that case, domains can be re�ned which results in a reduced
problem with smaller search space left. Note also that the repeated test of the
forward-checking condition amounts to the overhead cost mentioned in Figure 6.2.

� Finally, the Looking-Ahead (LA) technique performs much more consistency
enforcement at each time a lookahead-checkable goal is selected from the current
resolvent. It basically enforces arc-consistency on the corresponding constraint
which can result in a signi�cant pruning of the search space, thus reducing the
overall search cost. However, checking arc-consistency at each time a constraint
becomes lookahead-checkable is much more expensive than forward-checking the
constraint and thus drastically increases the problem-reduction costs.

As we are interested in minimizing the overall cost of solving a constraint problem,
Figure 6.2 suggests to search for some compromise between forward-checking and looking-
ahead. In Section 6.3, we will present weak looking-ahead, which can be regarded as such
a compromise between forward-checking and looking-ahead, and thus helps to obtain
an early search-space pruning while avoiding the high costs for arc-consistency checking
involved by standard looking-ahead: Let us assume that, in our above looking-ahead
example, we would perform the �rst looking-ahead step as shown, but after that, we
would not do any more looking-ahead, but instead solve the (now simpli�ed) problem by
normal resolution or by forward-checking. This procedure expresses the main idea of the
weak looking-ahead strategy which we will point out in more detail in the following.

6.3 Weak Looking-Ahead

The weak looking-ahead (WLA) strategy combines the use of LAIR and FCIR. A similar
technique has been informally proposed in [De Schreye et al., 1990] as \�rst-order looking-
ahead". We present a generalized technique that we call weak looking-ahead. This name
seems more appropriate for expressing what the underlying algorithm really does. The
basic idea of WLA is that each constraint can be selected by the looking-ahead part not
more than once, and that this should happen at an appropriate time. After this, only the
FCIR (or normal inference) can be applied to it. This idea is covered by the following
de�nitions.
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De�nition 37 (WLA-checkable) An atom p(t1; :::; tn) is called WLA-checkable if p is
a constraint and

� p(t1; :::; tn) is lookahead-checkable and has not yet been selected by the WLA, or

� p(t1; :::; tn) is forward-checkable and has already been selected by the WLA.

De�nition 38 (weak looking-ahead) Let P be a program, Gi = ?�A1; :::; Ak; :::; Am

a goal and �i+1 a substitution. Gi+1 is derived by the WLA along with �i+1 from Gi

and P if Ak is WLA-checkable with X1; :::; Xn being the WLA variables in Ak and the
following holds:

� If Ak is lookahead-checkable and the WLA has not been applied to Ak in the actual
proof, then:

For each Xj, the new domain is �̂Xj
= fvj2�j j 9v12�X1

, ..., vj�12�Xj�1
,

vj+12�Xj+1
, ..., vn2�Xn : P j= �(Ak) with � = fX1 v1, ..., Xn vngg:

For each xj, if �̂Xj
has become a singleton set, i.e. �̂Xj

= fcg, then the new value

yj is the constant c, otherwise a new domain variable ranging over �̂Xj
. �i+1 then is

de�ned as �i+1 = fX1  y1; :::; Xn  yng.

The new goal Gi+1 is either ?- �i+1(A1; :::; Ak�1; Ak+1; :::; Am), if at most one yj is a
domain variable, or Gi+1 is ?-�i+1(A1; :::; Am), otherwise.

� If Ak is forward-checkable, then:

Let X be the forward variable inside Ak. Then, the new domain �̂X is de�ned as
�̂X = fa 2 �X j P j= AkfX  agg

�i+1 is de�ned as �i+1 = fX  cg, if �̂X = fcg, i.e. �̂X has become a singleton.
Otherwise, �i+1 = fX  Xdg, where Xd is a new domain variable ranging over �̂X .

The new goal Gi+1 is ?- �i+1(A1; :::; Ak�1; Ak+1; :::; Am):

The main point of the above de�nition is the de�nition of Gi+1 in case of Ak be-
ing lookahead-checkable, which uses SLDFC resolution (SLD resolution with forward-
checking, cf. [Van Hentenryck, 1989]) in order to complete the proof after some preprun-
ing has been done by using the LAIR in a de�nite way.

Since the LAIR part gets involved not more than once for each goal, and since this
happens as early as possible, the disadvantages of the LAIR, i.e. the high computational
overhead, can be avoided. Therefore, weak looking-ahead o�ers an alternative to stan-
dard looking-ahead where an initial pruning of the search space is desired in order to early
achieve instantiations such that for further constraint propagation, forward-checking will
su�ce. However, in the FiDo system that will be presented in Section 6.5 all three
consistency techniques presented in this chapter have been implemented.

So far, we have now more formally presented the weak looking-ahead technique that
combines the pruning power of looking-ahead (once at the �rst time a constraint is
activated) with the computational e�ciency of forward-checking (for further checking at
each time a variable gets instantiated). In the next section, we will illustrate how weak
looking-ahead really works by using a variant of our running example.
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6.4 Using Weak Looking-Ahead for Map-Coloring

For illustrating the WLA technique, we take the following variant of the German-map col-
oring problem that builds on the initial German-map coloring problem but also includes
the eastern states:

Problem 4 (Weak german-map coloring problem) The weak german-map color-
ing problem is to color the political map of Germany as shown in Figure 4.1 on page 70.
As in the initial problem statement, the following colors have already been �xed: Hessen
should be colored green while Hamburg, Bremen and Saarland should be red. Besides red
and green which are allowed for all states, the (old) western states may be colored blue
while the (new) eastern states take yellow as their third possible color.

According to the representation proposed in Chapter 2, the weak map-coloring prob-
lem can be represented and solved by the following logic program enhanced with decla-
rations for domain variables and consistency techniques to be applied:

weak_coloring(TH,BB,BW,SL,NW,HB,SH,BL,SN,SA,MV,BY,RP,HS,NS,HH) :-

domvars([BW,SL,NW,HB,SH,BY,RP,HS,NS,HH],[r,g,b]),

domvars([TH,BB,BL,SN,SA,MV],[r,g,y]),

wla(ne(SH,HH)), wla(ne(SH,MV)), wla(ne(NS,HH)), wla(ne(NS,SH)),

wla(ne(NS,MV)), wla(ne(NS,SA)), wla(ne(SA,MV)), wla(ne(NS,HB)),

wla(ne(NS,NW)), wla(ne(SA,BB)), wla(ne(BB,MV)), wla(ne(BB,BL)),

wla(ne(TH,SA)), wla(ne(TH,NS)), wla(ne(HS,TH)), wla(ne(HS,NW)),

wla(ne(HS,NS)), wla(ne(SN,BB)), wla(ne(SN,SA)), wla(ne(SN,TH)),

wla(ne(BY,SN)), wla(ne(BY,TH)), wla(ne(BW,BY)), wla(ne(RP,BW)),

wla(ne(RP,HS)), wla(ne(BW,HS)), wla(ne(BY,HS)), wla(ne(RP,NW)),

wla(ne(RP,SL)),

instantiate([TH,BB,BW,SL,NW,HB,SH,BL,SN,SA,MV,BY,RP,HS,NS,HH]).

In the following, we will discuss in detail how weak looking-ahead processes the corre-
sponding query

?- weak_coloring(TH,BB,BW,SL,NW,HB,SH,BL,SN,SA,MV,BY,RP,HS,NS,HH).

As we have mentioned before, the main di�erence between solving the map-coloring
problem using CSP techniques like the GenerateSolutions algorithm and solving it
using constraint logic programming techniques like weak looking-ahead is that in the
�rst approach the complete �nite constraint network is present when starting processing
whereas in the latter constraints are generated and processed dynamically as they are
selected from the resolvent in the SLD resolution.3

The �rst constraint to be activated is ne(SH,HH) where the domain of HH, �HH, is al-
ready restricted to the singleton set frg. Performing the initial looking-ahead step on
ne(SH,HH) results in deleting the value r from �SH. Now, adding the next constraint
ne(SH,MV) does not a�ect any domains of other constraints. Thus, after activating the

3Therefore, the latter approach can also be used for dealing with potentially in�nte constraint
problems.
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�rst two constraints ne(SH,HH) and ne(SH,MV) we obtain the following constraint net-
work as shown in Figure 6.3.
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MVXXX���

frg

fg,bg

fr,g,yg

Figure 6.3: The map-coloring network after activating the �rst two constraints

Next, the constraint ne(NS,HH) is added which causes the deletion of the value frg
from the domain of NS analogously to SH in the �rst step. The following activation of the
constraints ne(NS,SH), ne(NS,MV), ne(NS,SA), and ne(SA,MV) again have no e�ect on
any other domains, and thus we obtain the following constraint network (Figure 6.4).
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Figure 6.4: The map-coloring network after activating the �rst 7 constraints

Activating the next �ve constraints ne(NS,HB), ne(NS,NW), ne(SA,BB), ne(BB,MV),
and ne(BB,BL) also do not a�ect any domains; the value r was already deleted from the
domain of NS. Hence, we have the following constraint network after activating the �rst
12 constraints (Figure 6.5).
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Figure 6.5: The map-coloring network after activating the �rst 12 constraints
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Now, the constraints ne(TH,SA) and ne(TH,NS) are activated but cause no further
restrictions. Then, the constraint ne(HS,TH) is added. As the domain of the variable HS
is already restricted to fgg, the value g will be deleted from �TH. Next, the constraint
ne(HS,NW) is added to the constraint network which analogously causes the value g to
be deleted from domain of NW which is thus re�ned to �NW = fr,bg. At this stage we
obtain the following constraint network (Figure 6.6).
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Figure 6.6: The map-coloring network after activating the �rst 16 constraints

When adding the constraint ne(HS,NS), the looking-ahead step performed for this
constraint deletes the value g from the domain of NS. Thereby, �NS becomes the singleton
set fbg, thus NS gets instantiated to the de�nite value b. This `wakes up' all constraints
connected to NS to be forward-checked: Checking ne(NS,SA), ne(NS,MV), and ne(NS,TH)

is unspectacular while checking ne(NS,SH) and ne(NS,NW) results in deleting the value
b from �SH and �NW, respectively. Thereby, the domains of NW and SH both become
singleton sets causing forward-checking to be performed on all constraints connected to
NW or SH. Thus, checking ne(SH,MV) results in deleting g from �MV. Therefore, we now
have the following constraint network (Figure 6.7).

As processing continues, more constraints are added to the constraint network: The
constraints ne(SN,BB), ne(SN,SA), ne(SN,TH), ne(BY,SN), ne(BY,TH), ne(BW,BY) and
ne(RP,BW) are added without a�ecting any other constraints; then the constraints con-
necting HS with RP, BW, and BY, respectively, are added. As �HS = fgg, the value g is
deleted from the domains of RP, BW, and BY, but without any further consequences to
other constraints. Thus, we obtain the following, nearly complete, constraint network
(Figure 6.8).

When �nally adding the remaining two constraints ne(RP,NW) and ne(RP,SL), the
value r is deleted from the domain of RP due to �NW respectively �SL being the singleton
set frg. Thus, �RP becomes fbg. This domain instantiation, however, forces the con-
straints ne(RP,BW) to be checked again which in turn results in deleting the value b from
�BW, again reducing the domain of BW to a singleton set and thus instantiating BW to r.
Thereby, the constraint ne(BW,BY) is `waked up' resulting in reducing �BY to fbg. Now,



122 Chapter 6: Finite Domain Constraints in Logic Programming

&%
'$
NW

&%
'$
HB

&%
'$
HH &%
'$

SH

&%
'$

HS

&%
'$

NS

&%
'$
MV

&%
'$

BL

&%
'$
BB

&%
'$

SA

&%
'$
TH

C
CC

XXX���

aa
aa

aa

�
�
�
�
�
��

�
�
�
�
��

L
L
LL

!!!!!!

aaaaaa

aaaa
�
�
��

@
@
@
@

T
T
T
T
T
T
TT

frg

frg

frg

fgg

fgg

fbg fr,g,yg

fr,yg

fr,g,yg

fr,g,yg

fr,yg

Figure 6.7: The map-coloring network after activating the �rst 17 constraints
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Figure 6.8: The map-coloring network after activating the �rst 27 constraints

this instantiation �nally `wakes up' the constraints ne(BY,TH) and ne(BY,SN) which are
checked successfully without any further domain restrictions. Thus, all constraints of the
map-coloring problem are now generated and we obtain the following constraint network
(Figure 6.9).

One can easily recognize that all variables representing the colors for western states
have already been instantiated whereas the domains of the remaining six variables for the
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Figure 6.9: The complete map-coloring network after initialization

eastern states are nearly the same as in the beginning. This again illustrates that local
consistency techniques like arc-consistency or looking-ahead may not su�ce to completely
solve a constraint problem. To �nally obtain a solution, choices have to be made and
further propagated such that all variables get instantiated. However, if only one or a
limited number of solutions is required, the e�ciency of �nding them heavily depends on
the order in which choices are made, i.e., which variable to select next and which value
to try for it.

Therefore, constraint logic programming systems like the FiDo system that will be
presented in the next section, provide instantiate primitives that make choices in
order to achieve instantiations to all variables. As mentioned earlier, several heuristics
can be applied for selecting the variable which will be instantiated next. Best results
have been obtained using the remaining domain size or the number of related constraints
as a criterion for variable selection. The basic idea here is to obtain failures as early as
possible as then most parts of unsuccesfull search can be avoided. Hence, these heuristics
are also referred to as �rst-fail heuristics.

In our concrete example the variable TH is selected to be instantiated next as its domain
size is 2 and it is related to 5 other constraints. Thus, TH gets instantiated to a value from
its domain, say r. Thereby, the constraints ne(SA,TH) and ne(SN,TH) become forward-
checkable and the value r gets deleted from �SN and �SA and propagation stops still not
obtaining a complete instantiation. Thus, another choice has to be made, say y for SA
which results in a failure when the constraint ne(MV,BB) is waked up. Therefore, the
system has to backtrack for the �rst time and tries another alternative value for SA which
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is to instantiate SA to g. As a consequence, g is deleted from �SN which then becomes
instantiated to y. Hence, g and y are deleted from �BB which then is also instantiated
to a single value, r. Finally, MV will also be instantiated to y and propagation stops. AS
there is still one domain variable left (BL) a �nal choice has to be made and both choices,
g and b for BL appear to be consistent; thus we obtain the �rst two solutions from the
�nal constraint network (Figure 6.10).
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Figure 6.10: The �nal map-coloring network after propagating choices

If more than two solutions are required, backtracking will generate other choices and
�nally obtain two more solutions to the weak map-coloring problem.

This exhaustive trace of weak looking-ahead processing should have made clear the
principle of how WLA processes a constraint problem within the framework of logic
programming. In the next section, we will now discuss various approaches towards im-
plementing consistency techniques like forward-checking and weak looking-ahead in a
logic programming language in order to obtain a Finite Domain extension to Prolog.

6.5 Finite Domain Consistency Techniques in FiDo

In the FiDo framework, di�erent approaches towards an integration of FInite DOmain
Consistency Techniques in Logic Programming are investigated. The FiDo logic pro-
gramming language extends Prolog by supporting special mechanisms for e�ciently
dealing with constraints over �nite domains.
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Starting with the implementation of a meta-interpreter for FiDo written in Prolog
([Schr�odl, 1991]), we subsequently investigated the more sophisticated approach of hori-
zontally compiling FiDo programs into SEPIA, a Prolog system developed at ECRC
[Meier et al., 1989], by making use of the built-in coroutining mechanism ([M�uller, 1991]).
When working on this horizontal compilation approach, it became clear that the integra-
tion and handling of domain variables is the major issue concerning runtime e�ciency and
implementation complexity. Therefore, we then studied a vertical compilation approach
([Hein, 1992]) compiling �nite domain constraints vertically into a WAM architecture by
extending the basic WAM data structures [Warren, 1983] and using a freeze-like control
scheme [Carlsson, 1987].

6.5.1 The Meta-Interpretation Approach

When building �nite domain extensions for Prolog by constructing a meta-interpreter,
one has to implement his own meta-uni�cation routine working on an explicit represen-
tation of meta-variables. Domain variables can be implemented by simply extending the
terms representing meta-variables by some additional arguments holding the domain, the
goals depending on this variable, and pointers to variables and constants which have to
be checked for inequality with this domain variable.

In this approach, which is similar to that presented in [Holzbaur, 1990], we have
studied two ways of representing the domains: bit vectors and ordered linked-lists. For
the actual implementation, we only use the bit vector domain representation.

As in general with meta-interpretation, the main disadvantage of this approach is its
lack of e�ciency resulting from the necessity to do a lot of work on the meta-level which
could be done far more e�ciently by the underlying Prolog system.

6.5.2 The Horizontal Compilation Approach

In the horizontal compilation approach we study the compilation of FiDo programs
which are basically Prolog programs together with domain and control declarations
(e.g., forward-checking, looking-ahead, and weak looking-ahead) into a standard Prolog
program using delay clauses. Thus, this method can be considered as a source-to-source
transformation which has been proposed in [De Schreye et al., 1990].

An important feature is the explicit handling of �nite domains. A domain variable
X is internally represented as a 6-tuple (&,Xid,Xlength,X#Constraints,Xvalue,Xdomain). The
�rst argument is a ag used to identify domain variables. Xid denotes a unique domain
identi�er, Xvalue contains the singleton value of X, Xdomain uni�es with an explicit copy
of the domain, and Xlength is the actual length of the domain. This is needed for an
e�cient implementation of the singleton test and for the usage of �rst-fail heuristics.
The number of constraints, denoted by X#Constraints is needed for �rst-fail as well. If
these heuristics are not used, Xlength and X#Constraints are ignored.

A domain fel1,. . . ,elng is internally represented as a term dom((el1, ),...,(eln, )),
where the anonymous variables serve as ags. When a domain element is discarded
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from the domain, its ag is instantiated to \0". The advantage of this representation
then is a direct access to the domain elements. The calls to predicates declared to be
handled by some consistency technique are replaced by calls to rede�ned versions of the
predicates. These rede�nitions take into account the various instantiation possibilities,
e.g. the 6= constraint under forward-checking is compiled into for ne dd, for ne nd,
for ne dn and for ne nn respectively, handling domain (d) and non-domain-variable (n)
arguments. The e�ective calls to the forward-checking or looking-ahead algorithms are
then performed within the specialized constraints, e.g. in for ne dd. For some frequently
used built-in constraints, such as 6=, =, < and >, e�cient specialized versions of forward-
checking algorithms are available. For other user-de�ned constraints, general forward-
checking and looking-ahead algorithms are used.

At the �rst glance, this approach has some similarities with the one described in [De
Schreye et al., 1990]. However, there are some di�erences concerning the internal domain
representations which give better performance. Moreover, the necessary declarations are
created automatically in FiDo while in [De Schreye et al., 1990] these statements have to
be given by the programmer. The design used for domain declarations in FiDo therefore
provides more declarativity and easier readability of programs.

In the horizontal compilation approach, FiDo supports local forward, lookahead,
and wla declarations. This is opposed to systems like CHIP [Dincbas and Van Henten-
ryck, 1988] that use global declarations. We have chosen local declarations, because in
some cases it might be useful to execute one constraint in di�erent environments dif-
ferently, say in one procedure call by using forward-checking, in another call by using a
looking-ahead algorithm. Using global declarations this leads to serious problems, while
using local declarations it can be achieved very easily, since not predicates are subject
to declarations but predicate calls are.

6.5.3 The Vertical Compilation Approach

Meta-interpretation is a straightforward implementational technique | but rather slow.
The more elaborated horizontal compilation technique was based on a delay mechanism
and on a domain variable representation using structures in which an unbound variable
holds successive bindings of the domains. Thus, some kind of dereferencing operation
had to be implemented on top of SEPIA resulting in the problem that the more often
the domain is rebound to a smaller domain, the more dereferencing steps have to be
done. This basically is the reason why the runtime e�ciency gained by the horizontal
compilation approach decreases with the problem complexity.

Therefore, in order to be able to represent and solve the real-world applications we
have in mind, we investigated how to compile FiDo programs directly (vertically) into
code for an abstract machine. As the Warren Abstract Machine (WAM) is the model
commonly used for Prolog compilation, we study how to extend this model for dealing
with �nite domain constraints. The two major ingredients for �nite domain constraints
in the WAM are a mechanism for the control strategies (forward-checking, looking-ahead,
and weak looking-ahead) and an extension of the WAM uni�cation algorithm coping with
domain uni�cation and a set of domain-variable speci�c WAM instructions.
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Compiling FiDo programs

Currently, the WAM emulator we use for FiDo is implemented in LISP, thus hiding a lot
of implementation details, e.g. the e�cient representation of domains. FiDo programs
are compiled into a \normal form" [Hein and Meyer, 1992] where additional information
obtained by static analysis can be used. The normal form consists of very few constructs
and can be easily transformed into a WAM-based language. The control instructions of
this machine are similar to the original WAM. However, information from static analysis
mainly a�ects the uni�cation represented in WAM by the get/put/unify-instruction
sets. We are compiling into LISP code which is put into arrays and compiled by the
LISP compiler. Thus, the \dirty" task of compiler optimizing techniques is left to the
underlying LISP system. However, we are able to do the uni�cation optimizations on
the abstract \normal form" level which are normally done on machine level.

Using results from static analysis

Looking at the runtime behavior of usual WAM code, we can see that the ordinary WAM
instructions often do unnecessary work. Dereferencing is a good example, e.g. a switch

instruction dereferences its argument and jumps to the corresponding code | normally
a get instruction | which again dereferences its argument. On the WAM level, there is
no way to avoid this redundant operation.

However, results from static analysis [Tucker and Zucker, 1992] can help to avoid gen-
erating unnecessary code. One part of useless computation originates from applying a
general uni�cation algorithm. The bird's-eye view of the general uni�cation procedure
reveals a kind of a \case-statement" branching on the type of the two arguments. Often
we do not need to call the general uni�cation but better a specialized matching or as-
signment routine when the types are already known. Thus, type inferences [Debray and
Warren, 1986, Mellish, 1985] avoid useless tests and memory usage by such dead code,
e.g. unifying a variable known to be unbound with a constant results in a simple binding
(in general, with trailing).

For each optimization feature (dereferencing, trailing) we could \duplicate" parts
of the WAM instruction set. Taking several optimizations into account, an inationary
number of new instructions would result. This can be avoided by doing the optimizations
on the abstract (normal form) level and then applying the WAM compilation scheme
[Hein and Meyer, 1992].

The static analyzer also has to cope with special problems arising from integrating
�nite domain constraints. We must take into account not only the handling of �nite
domains but also the di�cult delay and wake-up mechanism which has not been examined
before.

The extended WAM { from freeze to FiDo WAM

The �rst WAM extension supporting the delay of parts of the computation (freeze) was
presented by [Carlsson, 1987] where the representation of unbound variables is enhanced
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by the notion of variable suspension. In FiDo we also need representations for domain
variables and suspended domain variables.

The proposed implementation of freeze indicates an exception by a ag in the WAM
status as soon as a suspended variable is touched by some binding. The woken procedure
(Prolog code) is responsible for freezing any new variables; furthermore every freeze
operation builds a new data structure in the runtime area holding the state of the frozen
goal. For FiDo this would be a problem since testing whether the procedure may �re
can happen very often and would result in creating this data structure over and over
again.

The code for building the constraint net and maintaining the delayed goals �ts per-
fectly into the philosophy of WAM compilation, e.g. argument places can be compiled
left to right. However, constraints are checked too often due to the simple waking mech-
anism. Therefore, in FiDo we split each constraint procedure into building code for the
constraint net, the �ring code and structures waking up the constraint only if the �ring
conditions are ful�lled (after a binding operation). Doing so, we �nally get a much better
runtime performance.

6.6 Discussion and Related Work

In this chapter, we have shown how consistency-improving techniques can be integrated
into a universal logic programming language and how constraint processing can be inter-
leaved with SLD resolution. The standard consistency techniques that are available in
most other constraint logic programming systems like CHIP [Dincbas and Van Henten-
ryck, 1988] or clp(FD) [Diaz and Codognet, 1993] have been identi�ed as either being too
weak (forward-checking) or inducing too much computation overhead (looking-ahead).
Therefore, we have presented the weak-looking-ahead technique which combines the prun-
ing power of looking-ahead with the simplicity and e�ciency of forward-checking. Using
weak looking-ahead for solving combinatorial problems thus improves the e�ciency of
constraint solving within logic programming while preserving the declarativity of the
purely relational representation formalism.

However, dealing with overconstrained problems which most real-life applications de-
mand, is still an open research issue in the context of logic programming. Only recently,
work on preferential Horn theories for integrating preferences into logic programs has
appeared [Brown et al., 1993] which opens an interesting direction for further research.
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Parallel Constraint Satisfaction in Logic

Programming

In the previous chapters, we have seen that consistency techniques embedded in a logic
programming framework allow for solving discrete combinatorial problems e�ciently.
Nevertheless most of these problems still remain computationally expensive and the
emergence of parallel computers opens a new area for research: the combination of
constraint satisfaction and parallel execution in the framework of logic programming.

In this chapter1, we present a �rst step in that direction. After a brief introduction to
parallel logic programming issues in Section 7.1, we will then study in Section 7.2 how
or-parallelism and consistency techniques on �nite domains can be combined to yield an
e�cient parallel language for representing and solving �nite domain constraint problems.
In Section 7.3, some problems raised by an or-parallel version of FiDo will be discussed
in detail and a solution to them will be described as well. The chapter then concludes
with a comparison of this approach to the SRI Model for or-parallel Prolog.

7.1 Parallel Logic Programming

Much research has been devoted during the last years to improving the e�ciency of logic
programming for combinatorial problems. This has led to the de�nition of several con-
straint programming languages (e.g., [Colmerauer, 1987, Dincbas and Van Hentenryck,
1988, Ja�ar and Lassez, 1987, Voda, 1988]) combining the declarative aspects of logic
programming with the e�ciency of constraint-solving techniques.

Concurrently to this research, much attention has been devoted to parallelizing Pro-
log. The motivation behind this research stems from the emergence of commercial mul-
tiprocessor computers and the declarative aspects of logic programming which, in prin-
ciple, liberates programmers from managing parallelism. Di�erent computation models
have been proposed to exploit either or-parallelism (e.g., [Clocksin and Alshawi, 1988,
Lusk et al., 1988, Shapiro, 1987, Warren, 1987]) either and-parallelism (e.g., [De Groot,
1984, Hermenegildo, 1986]) or a combination of both (e.g., [Westphal and Robert, 1987]).

1This chapter is a revised version of a paper that has been published in the proceedings of the Parallel
Computing Technologies (PaCT-91) conference [Meyer, 1991].
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Several of these models have been successfully implemented and show promising results
[Chassin et al., 1988, Lusk et al., 1988].

The results in these two di�erent directions, together with the fact that most con-
strained search problems are computationally expensive, were a major impetus to in-
vestigate parallel implementations of constraint logic programming languages. In this
context, �nite domains and consistency techniques for them such as forward-checking
and looking-ahead are of particular interest. They have a large variety of applica-
tions in discrete combinatorial problems and o�er large potentiality for paralleliza-
tion. Currently solving a discrete combinatorial problem in parallel requires either the
writing of a specialized program in a procedural language (e.g., [Kumar et al., 1988,
Wah and Ma, 1984]) or the use of a special-purpose package [Finkel and Manber, 1987].
The �rst approach is programming-intensive; solving a discrete combinatorial problem
in sequential requires much programming e�ort and parallelism further increases the
programming complexity. Special-purpose packages relieve programmers from manag-
ing parallelism but they are, at the moment, rather ine�cient. Compared to the above
approaches, a parallel version of FiDo is very appealing. Not only it reduces the pro-
gramming e�ort to the sequential part itself simpli�ed by the use of FiDo but it should
also result in a good e�ciency provided that the overhead of parallelism is kept small. It
is therefore of much interest to study if the sequential e�ciency of FiDo can be preserved
in a parallel implementation.

In this chapter we will discuss a �rst step in that direction: the design of an or-parallel
version of FiDo. We will show that the principles behind the sequential implementa-
tion can be generalized to support or-parallelism while keeping the overhead small. In
particular, basic operations on domains remain fast, constant-time operations.

In Section 7.2 we will identify di�erent opportunities for parallelism in FiDo before in
Section 7.3 we will then discuss how to exploit or-parallelism together with �nite domains
and consistency techniques.

7.2 What Parallelism to Exploit?

In this section, we review the main opportunities for parallelism arising in FiDo. There
are mainly two kinds of parallelism inside logic programming: and- and or-parallelism.
However, since the computational model of FiDo di�ers from the one of ordinary Pro-
log, it is appropriate to reconsider that issue. As discussed in Chapter 6, the compu-
tational model of FiDo for solving �nite domain constraint problems is best viewed as
the iteration of two steps: propagation and choices. Both steps provide opportunities for
parallelism, three of them being considered now.

First, a constraint can be solved in parallel. This opportunity for parallelism arises
inside the forward and (weak) lookahead declarations. Indeed, these control mechanisms
solve a constraint by trying out di�erent combinations of values for the variables appear-
ing inside the constraint and these combinations could possibly been tried in parallel.
This kind of parallelism is implicit in the bitwise forward checking version described in
[Haralick and Elliott, 1980] and is expected to be of small granularity in most cases.
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Second, the constraints can be propagated in parallel. During the propagation step,
several constraints have to be considered and we might think of propagating them in
parallel. This leads to a kind of and-parallelism. Once again this parallelism is expected
to be of small granularity in most cases and to introduce some synchronization prob-
lems since several constraints might share the same variable. It has attracted several
researchers in the AI community (e.g., [Swain and Cooper, 1988]).

Third, choices can be made in parallel. This is the usual or-parallelism of Pro-
log except that FiDo has much more to o�er in that context than usual logic lan-
guages. Indeed, choices can take various forms from instantiation (i.e., giving a value to
a variable), to domain-splitting (i.e., dividing the domain of a variable in several parts),
and to case analysis (i.e., using constraints for making choices). In all cases, a choice
means choosing among di�erent alternatives and the basic idea here is to explore sev-
eral of them simultaneously. This parallelism has attracted many researchers outside
the logic programming community (e.g., [Finkel and Manber, 1987, Kumar et al., 1988,
Wah and Ma, 1984]) and can be of large granularity. Parallelism has also an interesting
side-e�ect on branch and bound algorithms. It introduces either a depth-�rst component
in a best-�rst branch and bound or a breadth-�rst component in a depth-�rst algorithm.
Therefore anomalies (e.g., superlinear speedups) can be observed [Lai and Sahni, 1987].
For depth-�rst branch and bound algorithms like the FindOptimalSolution algorithm
presented in Chapter 4, parallelism might allow to �nd early a good (or even optimal)
solution that would otherwise require a long time. This solution can then be used to
prune the search space, avoiding spending time in parts of the tree which are not worth
exploring.

Among the above sources of parallelism, or-parallelism seems to be the most promis-
ing. It applies to the whole computation and not a speci�c part of it (e.g., the constraint
propagation). It can also be of large granularity and thus more amenable to imple-
mentation on a multiprocessor computer. Finally, it amounts to adding a breadth-�rst
component which can be valuable for the class of problems considered. Therefore we
decided to focus our investigations on the combination of or-parallelism and constraint-
solving.

7.3 Supporting Or-Parallelism in FiDo

In order to support or-parallelism, it is necessary to adapt the current implementation
schemes of FiDo. This section reviews the problems raised by or-parallel FiDo and
proposes several solutions to it.

7.3.1 The Problem

The computation of a logic language can be seen as a tree whose root node is the initial
goal and other nodes are obtained by reducing a goal using SLD-resolution or an extension
of it. Di�erent branches of the tree come from the di�erent clauses used to reduce a goal.
Prolog explores the computation tree using a depth-�rst search with chronological
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backtracking. In other words, when Prolog can apply several clauses to reduce a goal,
one of them is selected. The remaining clauses will be tried on backtracking. In or-
parallel Prolog, di�erent processors are used to explore several branches of the tree
in parallel, i.e., they try simultaneously several clauses for reducing the same goal. The
main problem raised by or-parallel Prolog is how to represent di�erent bindings of
the same variable on di�erent branches of the computation tree. Di�erent schemes have
been proposed to deal with that problem (e.g., [Ciepielewski et al., 1987, Warren, 1987,
Westphal and Robert, 1987]). In addition to the binding problem, FiDo introduces
a further di�culty due to domain-variables. Let us illustrate the problem through an
example. Suppose X is ranging over f1,...,10g and the constraint X 6= 3 has to be
solved. In theory, this constraint is solved by binding X to a new variable Y ranging over
f1,2,4,...,10g. However, for e�ciency and memory reasons, the implementation scheme
of FiDo removes the value 3 from the domain of X and trails the modi�cation to undo it
on backtracking. Therefore the new problem to be solved by or-parallel FiDo is how to
represent di�erent states of the same domain on di�erent branches of the tree2. Although
this problem looks similar to the binding problem of Prolog, it has a main di�erence.
In Prolog, a variable is free or bound. When the variable is bound, it never changes
its value. This is not the case for domain-variables. The domain �elds (i.e., the �elds
representing the domain of a variable) can be updated several times. It follows that
existing binding schemes do not apply directly although they provide useful insights on
the present issue.

7.3.2 A Copy Solution

A straightforward solution to the above problem consists of requiring that or-parallel
FiDo follows precisely the theory, i.e., each time the domain of a variable is updated,
a new variable ranging over the reduced domain is created and the variable is bound to
this newly created variable. This solution enables existing binding schemes of or-parallel
Prolog to be used for solving our problem. Its basic advantage is its simplicity. Its
drawback is the unacceptable overhead it induces. In sequential FiDo, basic operations
on domain-variables require constant time and do not depend on the size of the domains.
This property is obviously violated by the copy solution. Since we aim at an e�ciency
on a single processor comparable to a good sequential implementation, a better scheme
has to be devised.

7.3.3 Avoiding Copying

In order to avoid copying the domains, a new data structure local to a process, the
domain frame, is introduced. It contains the state of domains for the branch, the process
is working on. When a domain-variable is created, its domain is stored in the domain
frame instead of in the global stack for the sequential implementation. It follows that
each process has its own view of the domains and modi�cations of the domain �elds only

2A similar problem arises with the constraints. Since the solution is the same in both cases, we only
discuss domains in this thesis.
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occur in the domain frame without a�ecting the view of other processes. The use of a
domain frame makes sure that all basic operations on domains (e.g., testing if a value is
in the domain) remain constant-time operations.

The main overhead of this approach arises when switching tasks. In that case, the
process has to update the contents of the domain frame to reect the state of the domains
at the branch point it is grabbing work from. The update of the domain frames is achieved
by using the usual value-trail which has to be generalized for that purpose to include
three �elds:

� the entry in the domain frame;

� the old value of the entry;

� the new value of the entry.

The old value �eld is necessary to restore the previous value of the entry on backtracking
while the new value �eld is needed to update domain frames at switching tasks.

7.3.4 Avoiding Trailing

Since the value-trail is used not only on backtracking but also to update the domain
frames, it is necessary to make sure that it contains all necessary information to achieve
these two activities. An obvious way to enforce this requirement consists of trailing all
modi�cations to the domain frames. However, this simple solution would induce a severe
overhead and requires much more memory for the parallel version than for the sequential
one. Moreover the size of the value-trail directly de�nes the cost of switching tasks and
thus reducing the amount of trailing decreases the cost of switching tasks. For these
reasons, special care should be devoted to avoid trailing. The sequential optimizations
have to be generalized to make sure that the amount of trailing of or-parallel FiDo is
proportional to the one of sequential FiDo.

7.4 Discussion and Related Work

In this chapter, we have considered the issue of exploiting parallelism and constraint-
solving together in the logic programming framework. Starting with the computational
model of FiDo for �nite domain constraint problems, di�erent opportunities for par-
allelism have been identi�ed. The most promising alternative, the combination of or-
parallelism and consistency techniques on �nite domains, has been considered in some
detail. The problems raised by an or-parallel FiDo have been de�ned and several pos-
sible solutions have been proposed. Among them was an e�cient scheme which makes
sure that all operations on domains remain constant-time operations and preserves most
of the e�ciency of the sequential implementation.

The above scheme has some similarities with the SRI model presented in [Warren,
1987]. Each process (resp. worker in the SRI model) has a local data-structure for storing
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the domains (resp. bindings) which make sure that the basic operations on domains (resp.
variables) remain constant-time operations. The basic overhead arises at task switching
due to the need to update the domain frame (resp. the binding array). However there
are also some important di�erences between them.

The SRI model distinguishes between conditional and unconditional bindings. Only
conditional bindings are recorded into the binding array and trailed. Conditional bind-
ings are directly stored into the variable cell. This distinction comes from the single
assignment property of the logical variable. Once bound, a variable never changes its
value. This is not true for domain �elds which can be updated several times and dif-
ferently on di�erent branches. It follows that all the domain �elds have to store in the
domain frame.

The scheme does not assume a global address space as does the SRI model. During
dereferencing, a worker in the SRI model can access other workers' stacks. Since access
to a non-local stack is transparent in that model, it is necessary to have a global address
space. Conversely, the domain frame does not contain references but only pure data (i.e.,
the value of the domain �elds) so that no global address space is necessary. Finally, it is
worth noting that the scheme presented here is independent of the building scheme used
for variables.

Thus, we have seen that exploiting parallelism for �nite domain constraint solving
provides another direction towards our overall goal of improving both declarativity and
e�ciency of �nite domain constraint satisfaction. in this context the contribution of the
research presented in this chapter clearly is on improving the problem-solving e�ciency
while preserving the declarative aspects of the FiDo system. Hence, the investigation
of parallel constraint satisfaction techniques also contributes to let declarativity meet
e�ciency.
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Applications

In this chapter, we will present in more detail the application ofContax to the automatic
selection of lathe tools in the computer-aided production planning (CAPP) application
that we have already briey introduced in Chapter 1.

In Section 8.1, we will �rst introduce application scenario in which the lathe-tool
selection problem appears. Section 8.2 then presents the problem setting in more detail
and how the problem can be formulated as a CSP (Section 8.3). As this problem exhibits
some characteristics that can be found in many, especially technical applications, in
Section 8.4 we will put special consideration on these issues and will discuss to how far
the functionality of the Contax system matches the requirements of the application.

In Section 8.6, the chapter will then be concluded by briey presenting an application
of Contax to University Sports Planning which is still under development but already
shows impressive results.

8.1 The CAPP Application Scenario

The ARC-TEC project at DFKI constitutes an AI approach to implement the idea
of computer-integrated manufacturing (CIM). Along with conceptual solutions, it pro-
vides a continuous sequence of software tools for the Acquisition, Representation, and
Compilation of TEChnical knowledge (cf. [Bernardi et al., 1991]). For its evaluation, an
expert system for production planning had to be developed.

The input to the production planning system is a very low-level description of a
rotational-symmetric workpiece as it comes from a CAD system. Geometrical description
of the workpiece's surfaces and topological neighborhood relations are the central parts
of this representation. If possible at all, production planning with these data starting
from (nearly) �rst principles would require very complex algorithms. Thus, planning
strategies on such a detailed level are neither available nor do they make sense. Instead
human planners [Schmalhofer et al., 1991] have a library of skeletal plans in their minds.
Each of these plans is associated with a more or less abstract description of a (part of
a) workpiece, which are called workpiece features [Klauck et al., 1991]. Such a feature is
de�ned by its association to a corresponding manufacturing method.

The generation of an abstract feature description of the workpiece is the �rst step of
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the production planning process. The obtained features characterize the workpiece with
respect to its production. In a second step the skeletal plans (associated to the features)
are retrieved and merged resulting in an abstract NC program, which is then transformed
into code for the concrete CNC machine.

This schema shows a strong similarity to the heuristic classi�cation approach pre-
sented in [Clancey, 1985]: feature recognition performs an abstraction from concrete
details to abstract features which are then matched to skeletal plans. These are in turn
then merged and re�ned in order to obtain the �nal plan for the CNC machine. Figure 8.1
illustrates the `arc' of heuristic classi�cation as it is applied to our CAPP application.
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Figure 8.1: Heuristic classi�cation applied to the CAPP scenario

The planning system has been developed using CoLab [Boley et al., 1993], a hybrid
knowledge representation and compilation laboratory, which integrates the power of for-
ward and backward reasoning, constraint propagation, and taxonomic classi�cation. The
focus is not on an integrated smooth system, but on exemplifying methodologies for the
use of hybrid formalisms at certain subtasks. These various subtasks require a number
of specialized reasoning mechanisms integrated in CoLab: Feature aggregation is per-
formed by the forward reasoning component Forward1 together with the terminological

1Forward [Hinkelmann, 1992] is a declarative rule-based system with Horn clauses as its basic
representation scheme, which is tightly coupled with RelFun to achieve bidirectional reasoning. It
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component Taxon.2 The derived features are �nally collected by a program written in
RelFun3, the backward reasoning component of CoLab. The abstract NC program
is then generated from the classi�ed workpiece by parameterized retrieval of skeletal
plans using RelFun and selecting the appropriate lathe tools via Contax which is also
integrated in CoLab.

As a hybrid system, CoLab combines backward (RelFun) and forward rules (For-
ward) with terminologies (Taxon) and constraints (Contax). It provides knowledge
items and processing methods for each of these formalisms as well as interfaces between
them.

8.2 The Lathe-Tool Selection Problem

The application problem we have solved with Contax appears in the re�nement phase
of the heuristic classi�cation scenario shown in Figure 8.1. Once one or more appropriate
skeletal plans have been associated to the workpiece and merged into one abstract plan,
the problem comes up to �nd appropriate lathe tools for manufacturing the workpiece.
This problem is now referred to as the lathe-tool selection problem.

Figure 8.2: An example workpiece to be manufactured

According to the shape, the material and other attributes of the lathe part to be
manufactured, the work-plan consists of a number of di�erent steps. A typical work-plan

o�ers two di�erent implementations: The �rst interprets bottom-up rules directly using a magic set
transformation for goal-directed reasoning. The second transforms bottom-up and bidirectional rules to
Horn clauses which are �nally compiled into code for an extended WAM with a special forward code
area. The cooperation of Forward and Taxon combines the general purpose reasoning power of rule-
based systems with the inheritance abstraction provided by terminological systems together with their
ability to check (concept) de�nitions for plausibility [Hanschke and Hinkelmann, 1992].

2Taxon [Baader and Hanschke, 1991, Hanschke, 1993] is a kl-one-like knowledge representation
system. It provides two subformalisms: one to de�ne and reason about terminologies, called Tbox,
and another (called Abox) to reason about assertional knowledge. A terminology consists of a set
of intensional concept de�nitions, which are arranged in a subsumption hierarchy (actually a directed
acyclic graph) by the classi�cation service. In the Abox the concepts can be instantiated by individuals.
The individuals have attributes and belong to concepts. This assertional knowledge is used to determine
the most speci�c concepts in the subsumption hierarchy to which the individuals belong (realization
service).

3RelFun [Boley, 1993] is a logic-programming language extended by call-by-value, non-deterministic,
non-ground functions, and higher-order operations. Its integrating concept is valued clauses encompass-
ing both Horn clauses for de�ning relations and directed conditional equations for de�ning functions.
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may provide one step for roughing, another step for �nishing and a third (facultative)
step for doing the �ne �nishing of the lathe part. However, a work-plan can be much
more complicated. For each processing step, appropriate tools have to be chosen.

This tool selection depends heavily on a lot of geometrical (e.g. the edge-angle) as
well as technological parameters (e.g. material, process etc.). Moreover, the tool system
itself consists of subparts that have to be combined, e.g. the tool holder, the material of
the plate and its geometry. In practice, there are a lot of restrictions, 'which holder to
use for which plate', 'which kind of plate geometry to use for which workpiece contour'
and so on. Figure 8.2 shows a typical lathe workpiece where one can already identify
the di�erent processing steps for which lathe tools have to be selected. The lathe tools
for the di�erent manufacturing features and lathe-turning steps are �nally selected by
Contax and are shown in Figure 8.3.

Figure 8.3: The selected lathe tools for the example workpiece

The lathe-tool selection problem can naturally be formulated as a CSP as will be
shown here for a small part of the real problem. To keep things simple, we may assume
that a lathe tool consists of two basic parts:

� the cutting plate, which actually cuts the material, and

� the tool holder, which serves to hold the cutting plates.

We can exchange either the cutting plate only or both plate and holder. There is a
functional relation between holders and tools, i.e. for one holder, only a few tools are
suited. A crucial point in this context is to minimize the number of tool exchanges, i.e.
doing as many processing steps as possible with the same tool.

In our application, we are now concerned with �nding a well-suited tool|or rather: a
number of well-suited tools|starting from a set of constraints which describe the actual
problem, i.e. information about the process to be performed, about the lathe part to be
processed, and internal information about the compatibility of holders and cutting-plates
as well as about holder and plate geometries. Lathe-tool selection will then result in a
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set of possible holder/tool combinations for each skeletal plan or manufacturing feature.
Using this information, the planning layer formalized in RelFun will �nally perform
some global optimizations necessary to obtain the best workplan.

8.3 The Lathe-Tool Selection Problem as a CSP

When formalizing the tool selection problem as a CSP, one of the �rst steps to do is to
determine the objects in the problem statement that will be represented by variables in
a CSP. For the lathe-tool application we obtain, for example, the following variables:

� Holder: This variable denotes the tool holder. In the beginning, it ranges over the
domain of all holders. During constraint propagation, it will be restricted to the
set of holders which can currently be chosen.

� Plate: This variable denotes the cutting plate to be chosen. Analogously to the
holder variable, it ranges over the set of all cutting plates and will be restricted
subsequently.

� Process: This variable corresponds to the actual kind of processing.

� WP-material: This variable contains the material of the lathe workpiece.

� Beta-max: This variable denotes the maximal angle � appearing within the range
of one feature of the workpiece. In general, each of these features corresponds to a
single working process.

� Edge-Angle: This variable embodies the most important geometrical attribute of
a cutting-plate, its edge-angle ".

� TC-Edge-Angle: The tool cutting edge-angle � is a geometrical characteristic of
the tool holder. It denotes the angle between the horizontal cutting direction and
the marginal cutting axis of the holder.

χ β
ε

TC-Edge-Angle
Edge-Angle

Beta-Max

cutting direction

rotation axis

lathe part

holder cutting plate

β

Figure 8.4: The Angle Constraint
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Figure 8.4 gives a better understanding of the geometrical items introduced above.

Having identi�ed the problem variables, the constraints can be put on the variables.
In the following, we will consider only the most important constraints:

� holder tcea(Holder, TC-Edge-Angle): This constraint describes the func-
tional relation between a holder and its tool-cutting edge-angle. It is represented
as a primitive or database constraint by enumerating all the possible combinations.

� plate ea(Plate, Edge-Angle): This constraint is a database-constraint, too. It
denotes the fact that each plate has its own edge-angle. Of course, we could have
implemented the plate as a more complex data structure containing its edge-angle
as an attribute. For the sake of uniformity, we implemented it as a constraint, just
as we did with the holder tcea constraint.

� compatible(Holder, Plate): This constraint expresses the compatibility condi-
tion between tool holders and cutting plates.

� hard enough(Plate, WP-Material): For materials with di�erent degrees of
hardness, di�erent cutting-plates have to be used. Processing hardened steel, e.g.,
may require ceramic or even diamond cutting plates, whereas aluminum can be
cut with other, cheaper plates. Note, however, that hardness is just one of many
attributes of a material which are important in order to choose the right cutting
plate.

� process holder(Process, Holder): For the di�erent steps of processing, di�erent
types of holders are appropriate. Well-suited for the purpose of roughing, e.g., are
holders of the CSSNL class.

� process edge angle(Process, Edge-Angle): This constraint expresses a rule of
thumb which says that for roughing, plates with big edge-angles should be chosen,
whereas for �nishing, smaller edge-angles are appropriate.

� TC-Edge-Angle + Edge-Angle + Beta-Max < 180�: This numerical con-
straint expresses the condition that the sum of the tool-cutting edge-angle and the
edge-angle must be less than the di�erence between 180� and the maximal ascend-
ing feature-angle. This constraint becomes evident when looking at Figure 8.4,
where the angles are denoted by �; "; �, respectively.

In our example, all but one constraint are of binary nature. We have already discussed
that this is not a necessary condition for applying the Contax system on this problem.
However, many other constraint systems can process binary constraints only such that
the ternary constraint would have to be transformed into 3 binary ones according to the
scheme presented in Section 2.1.6. Figure 8.5 shows a part of the resulting constraint
network as concerns the variables and constraints that have been discussed.
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Figure 8.5: The Exemplary Constraint Net

8.4 Using Contax for Lathe-Tool Selection

The constraint system Contax presented in Chapter 3 has been used to formalize and
solve the lathe-tool selection problem as it occurs in our CAPP application. The principal
approach how to formalize the lathe-tool selection problem as a CSP has been given in
Section 8.3 using a small example. However, in our real-life application we have to deal
with a considerably larger set of constraints on some more variables ranging over much
larger domains.

8.4.1 Hierarchically structured domains

The current implementation of the lathe-tool selection module [Tolzmann, 1992] covers
59 di�erent cutting plates, 62 holders, and 22 di�erent materials. As nearly all domains
in the application exhibit some kind of hierarchical structure, we could make extensive
use of Contax' capability to e�ciently deal with hierarchically structured domains.

Indeed, we took this more complex application to evaluate the e�ciency gain by
exploiting hierarchical domain structures in constraint propagation. The results obtained
are twofold:

� As already mentioned in Chapter 5, hierarchical hyperarc-consistency does not pay
o� for dealing with small domain hierarchies or hierarchies with a high branching
rate in relation to the height. For example, the domain of workpiece materials
contains 22 individual elements which have been arranged on a three-level hierarchy
with an average branching rate of more than 5. For constraints over variables that
range over this domain, the hierarchical hyperarc-consistency algorithm was about
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two times slower than the `standard' hyperarc-consistency algorithm presented in
Section 3.2.1.

� However, on the domain of holders which shows a maximum branching rate of 4 and
a height of 8, hierarchical hyperarc-consistency clearly outperforms the `standard'
hyperarc-consistency algorithm by a factor of up to 4.

This again shows that it has to be carefully decided when to use the hierarchical version
of the hyperarc-consistency algorithm and when to use the `standard' (non-hierarchical)
variant even if the domains exhibit some kind of hierarchical structure.

8.4.2 Weighted constraints

As already mentioned in Chapter 1, the problem constraints determining the tool selec-
tion include requirements of di�erent strength. Besides the `hard' requirements as de�ned
e.g. by geometrical relations, there are a lot of more or less relaxable requirements in the
problem speci�cation. These include, e.g., technological `rules' like

If the workpiece is stable (a criterion depending on the length/diameter ratio)
and the edge-angle is of class large or medium,

then prefer a medium tool-cutting edge-angle (tc-edge-angle)

as well as economical ones like

If the current process is rough-turning the workpiece,

then a quadratic plate should be preferred to a triangular one wherever
possible. Quadratic plates can be used more often in a process since they
have one more tip.

Thus, it has been a crucial point for the success of applying Contax techniques to
the lathe-tool selection problem that priorities could be expressed together with the
requirements. Moreover, Contax provides means to express them most declaratively in
the form of discrete symbolic weights which keeps the application knowledge base easily
maintainable.

8.5 Discussion

The lathe-tool selection problem has been taken as a real-life application in order to
evaluate in how far the features that have been discussed in Chapters 4 and 5 and added
to the Contax system match the speci�c requirements that are present in most real
application problems.

After all, it appeared that without being able to attach weights to constraints, it
would have been much harder if not impossible to formalize the problem in Contax, at
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least requiring the Lisp program from which Contax is called to perform the necessary
optimization. Thus, this application has proved the need for weigted constraints to
broaden the scope for CSP applications.

Also, even if not strictly necessary for formalizing the problem in Contax, the ex-
ploitation of the hierarchical domain structure made the resulting Contax program
easier to understand as constraints could be formulated referring to subdomains instead
of individual values. Thus, the declarativity of the representation was increased|as was
the e�ciency for most (unfortunately, not all) constraints over hierarchical domains.

Finally, since variables and constraints are compiled into clos objects, the most
time-consuming task has been the generation of the constraint network. Thus, as in our
concrete application all constraints and variables that have to be generated are known
in advance, the constraint net can be built up when loading the whole planning system;
the constraint-solving process itself can then be performed very e�ciently.

8.6 Using Finite Domain Constraints for University

Sports Scheduling

The University Sports Scheduling problem appears within a small project carried out at
the University of Kaiserslautern that aims at using modern data processing technology
to enhance productivity in the area of the local University Sports Organization (HSSP4).

One particular application problem in this area is the scheduling of tennis courts that
has to be done every summer. Although it may sound as a problem quite easy to solve,
this is surely not quite true which may be best proven by the fact that once a year the
main HSSP group consisting of about 6 people spends about one afternoon to solve this
problem which is stated as follows:

� In Spring each year, students, guests, and researchers apply for getting assigned
one of four tennis courts for the whole season for one hour the week.

� Only time slots on week days between 8am and 8pm are assigned. On Saturdays,
the latest date is from 1pm until 2pm. However, as one of the HSSP people will
have to be present in order to open the sports arena in the morning and close it
afterwards, they are interested in not assigning dates on Saturdays.

� People apply as couples for to be assigned one court for one hour every week. In
order to have some criteria available for possible conict resolution, applicants are
asked to let the HSSP people know their preferred dates. Moreover, it is possible
and required to give a set of three di�erently preferred choices, e.g. Monday 9am
or 10am at priority 1, Wednesday after 4pm at priority 2, and Friday at 11am at
priority 3.

� To let the problem statement become even more complicated, there are also pref-
erences on the status of applicants, meaning that guests have a lower priority to

4in German: Hochschulsport, hence the abbreviation HSSP
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get their preferred date assigned than e.g. students have. The same is true for
university employees who get a higher priority than students.

� And �nally, applicants can also pose very special requirements such as that two
couples like to get assigned the same court for consecutive dates. The reason for
this requirement is that they may want to part avoid having to clean the court
afterwards.

The above mentioned requirements can all be represented as weighted �nite domain
constraints and can thus be solved using the Contax system. However, standard con-
straint solvers will only be able to solve this problem after performing a complete refor-
mulation which in turn decreases the declarativity of the approach. Moreover, whether
a reformulation for use with any other constraint system will result in better problem-
solving performance respectively e�ciency, has in the meantime become nearly irrelevant,
as the current Contax implementation solves the 1994 Tennis Courts Scheduling Prob-
lem in less than 3 minutes.

As this result alone is already very impressive, we would nevertheless like to add
that the Contax approach appears to be superior not only as concerns problem-solving
speed but also, most important, as concerns problem-solving quality. Figure 8.6 shows
the amount of �rst choices being satis�ed by the solutions (a) manually obtained by the
HSSP group and (b) obtained by the Contax application.

HSSP group CONTAX

Training

Special Arrangements

Priority 1 (1st choice)

Priority 2 (2nd choice)

Priority 3 (3rd choice)

Special Requirements

50.0 %

100.0 %

100.0 %

100.0 %

93.3 %

100.0 %

60.2 %

72.7 %

66.7 %

76.9 %

59.2 %

31.25 %

Figure 8.6: Problem-solving quality of Tennis Court Scheduling approaches

The quality of the solution can also easily be estimated by having a look at the
resulting schedule generated with Contax which is shown in Figure 8.7. The very
dark �elds represent �rst choice assignments, i.e. the applicants received exactly that
assignment they applied for.

The success of applying Contax to solving this problem heavily relies on its ability
to handle priorities between constraints. Thus, once again it appears that many real-
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Figure 8.7: Resulting Tennis Court Schedule generated with Contax

life applications demand for constraint solving techniques that able to handle weighted
constraints. Therefore, the Contax system again proves its applicability for tackling
real-life problems.
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9

Conclusions

The present thesis contributes to a number of research directions in the area of �nite
domain constraints. State-of-the-art constraint satisfaction techniques have been imple-
mented and extended towards the needs brought in by various practical applications:

� The representation of real-life applications cannot be restricted to using binary
constraints only. Thus, the �rst step was to extend the notion of arc-consistency
in constraint graphs towards hyperarc-consistency in constraint-hypergraphs for
arbitrary constraints (Chapter 3).

� Overconstrained problems demand for di�erent techniques for solving them par-
tially. Therefore, a partial constraint satisfaction approach has been presented that
allows to �nd the maximal or optimal solution to a constraint problem (Chapter 4).

� Hierarchically structured domains can often be found in technical applications.
In order to e�ciently deal with the structure of such domains, an extension of
hyperarc-consistency towards hierarchical hyperarc-consistency has been developed
(Chapter 5).

� For nearly all non-toy applications, constraint solving alone does not su�ce to
solve the application task. Thus, we presented an integration of constraint solv-
ing techniques within the framework of logic programming and introduced a new
consistency technique, weak looking-ahead (Chapter 6).

� Exploiting parallelism in logic programming is a current research issue. Hence,
we investigated how �nite domain constraint extensions can also bene�t from the
speedup that can be achieved by using or-parallelism (Chapter 7).

� Finally, two non-toy applications have been taken to study how some of the tech-
niques presented in this thesis contribute to solving real problems in computer-aided
manufacturing and in sports scheduling (Chapter 8).

Taking all techniques together, the research presented in this thesis enables us to solve a
wider class of problems, allows for a declarative problem representation, and can be im-
plemented e�ciently. Thus, �nally it contributes to let Declarativity meet E�ciency
and also to let Theory meet Application.
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